Skip to main content
Log in

ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

El Nino-Southern Oscillation (ENSO) is the leading mode of interannual global climate variability, which in its essence is often described by the equatorial dynamics of the recharge oscillator with a fixed pattern. Here we explore the idea that ENSO can be simulated in a model with a fixed pattern of sea surface temperature variability following the recharge oscillator mechanism, which interacts with the thermodynamic red noise of a slab ocean. This model is capable of simulating the leading modes of sea surface temperature variability in the tropical Pacific in good agreement with the observations and most coupled general circulation models. ENSO dynamics, amplitude, seasonality, the structure of the leading patterns, its meridional extension, its variations in an eastern and central Pacific pattern and associated positive feedbacks are all influenced and simulated well by including the interaction of recharge oscillator and the thermodynamic coupling to the slab ocean model. We further point out that much of the ENSO diversity in the spatial structure is a reflection of this interaction. However, it also has to be noted that some equatorial dynamics are missing in this model and in coupled general circulation models that are important for the ENSO diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Ashok K, Sabin TP, Swapna P, Murtugudde RG (2012) Is a global warming signature emerging in the tropical Pacific? Geophys Res Lett 39:L02701. doi:10.1029/2011GL050232

    Article  Google Scholar 

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J Atmos Sci 45:1687–1712

    Article  Google Scholar 

  • Bayr T, Dommenget D (2014) Comparing the spatial structure of variability in two datasets against each other on the basis of EOF-modes. Clim Dyn 42:1631–1648

    Article  Google Scholar 

  • Behringer D, Xue Y (2004) Evaluation of the global ocean data assimilation system at NCEP: the Pacific Ocean. In: Eighth symposium on integrated observing and assimilation systems for atmosphere, oceans, and land surface, Seattle, WA, vol 2.3. American Meteor Society (preprints). http://ams.confex.com/ams/pdfpapers/70720.pdf

  • Bretherton Christopher S, Widmann Martin, Dymnikov Valentin P, Wallace John M, Bladé Ileana (1999) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Burgers G, Jin F-F, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi:10.1029/2005GL022951

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño-Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Google Scholar 

  • Chiang JCH, Viamont DJ (2004) Analogous Pacific and Atlantic meridional modes of tropical atmosphere-ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Clement A, DiNezio P, Deser C (2011) Rethinking the ocean’s role in the Southern Oscillation. J Clim 24:4056–4072

    Article  Google Scholar 

  • Davies T, Cullen MJP, Malcolm AJ, Mawson MH, Staniforth A, White AA, Wood N (2005) A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Q J R Meteorol Soc 131:1759–1782

    Article  Google Scholar 

  • Dommenget D (2007) Evaluating EOF modes against a stochastic null hypothesis. Clim Dyn 28:517–531

    Article  Google Scholar 

  • Dommenget D (2010) The slab ocean El Nino. Geophys Res Lett 37:L20701. doi:10.1029/2010GL044888

    Article  Google Scholar 

  • Dommenget D, Latif M (2008) Generation of hyper climate modes. Geophys Res Lett 35:L02706. doi:10.1029/2007GL031087

    Article  Google Scholar 

  • Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Nino Southern Oscillation. Clim Dyn 40:2825–2847

    Article  Google Scholar 

  • Dommenget D, Haase S, Bayr T, Frauen C (2014) Analysis of the slab-ocean El Nino atmospheric feedbacks in observed and simulated ENSO dynamics. Clim Dyn 42: 3187-3205

    Article  Google Scholar 

  • Frauen C, Dommenget D (2010) El Niño and La Niña amplitude asymmetry caused by atmospheric feedbacks. Geophys Res Lett 37:L18801. doi:10.1029/2010GL044444

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39:L02706. doi:10.1029/2011GL050520

    Article  Google Scholar 

  • Giese BS, Ray S (2011) El Nino variability in simple ocean data assimilation (SODA), 1871–2008. J Geophys Res 116:C02024. doi:10.1029/2010JC006695

    Google Scholar 

  • Ham Y-G, Kug J-S (2012) How well do current climate models simulate two types of El Niño? Clim Dyn 39:383–398. doi:10.1007/s00382-011-1157-3

    Article  Google Scholar 

  • Hasselmann K (1976) Stochastic climate models. Part I: theory. Tellus 28:473–485

    Article  Google Scholar 

  • Jansen M, Dommenget D, Keenlyside N (2009) Tropical atmosphere–ocean interactions in a conceptual framework. J Clim 22:550–567

    Article  Google Scholar 

  • Jin F-F (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kao H-Y, Yu J-Y (2009) Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. J Clim 22: 615–632.

    Article  Google Scholar 

  • Kitoh A, Motoi T, Koide H (1999) SST variability and its mechanism in a coupled atmosphere–mixed-layer ocean model. J Clim 12:1221–1239

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Larson S, Kirtman BP (2013) The Pacific meridional mode as a trigger for ENSO in a high-resolution coupled model. Geophys Res Lett 40:3189–3194. doi:10.1002/grl.50571

    Article  Google Scholar 

  • Latif M et al (2001) ENSIP: the El Niño simulation intercomparison project. Clim Dyn 18:255–276

    Article  Google Scholar 

  • Martin GM, Milton SF, Senior CA, Brooks ME, Ineson S, Reichler T, Kim J (2010) Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J Clim 23:5933–5957

    Article  Google Scholar 

  • Martin GM et al (2011) The HadGEM2 family of met office unified model climate configurations. Geosci Model Dev 4:723–757

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Article  Google Scholar 

  • Neelin JD et al (1998) ENSO theory. J Geophys Res 103:14262–14290

    Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  • Rasmusson E, Wang X, Ropelewski C (1990) The biennial component of ENSO variability. J Mar Syst 1:71–96

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Powell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Ren H, Jin F (2013) Recharge oscillator mechanisms in two types of ENSO. J Clim 26:6506–6523

    Article  Google Scholar 

  • Roxy M, Patil N, Ashok K, Aparna K (2013) Revisiting the Indian summer monsoon-ENSO links in the IPCC AR4 projections: a cautionary outlook. Global Planet Change 104:51–60

    Article  Google Scholar 

  • Singh A, Delcroix T (2013) Eastern and Central Pacific ENSO and their relationships to the recharge/discharge oscillator paradigm. Deep Sea Res Part I 82:32–43

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experimental design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Nino in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Wang C, Wang X (2013) Classifying El Nino Modoki I and II by different impacts on rainfall in southern China and typhoon tracks. J Clim 26:1322–1338

    Article  Google Scholar 

  • Wang C, Weisberg RH, Virmani JI (1999) Western Pacific interannual variability associated with the El Niño-Southern Oscillation. J Geophys Res 104:5131–5149

    Article  Google Scholar 

  • Wang G, Dommenget D, Frauen C (2015) An evaluation of the CMIP3 and CMIP5 simulations in their skill of simulating the spatial structure of SST variability. Clim Dyn 44:95–114

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24:779–782

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific Ocean to atmospheric forcing. J Phys Oceanogr 5:572–584

    Article  Google Scholar 

  • Wyrtki K (1985) Water displacements in the Pacific and the genesis of El Niño cycles. J Geophys Res 91:7129–7132

    Article  Google Scholar 

  • Yu J-Y, Kim ST (2011) Relationships between extratropical sea level pressure variations and the Central-Pacific and Eastern-Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Zhang H, Clement A, Nezio PD (2014) The South Pacific Meridional Mode: a mechanism for ENSO-like variability. J Clim 27:769–783

    Article  Google Scholar 

Download references

Acknowledgments

We like to thank Tobias Bayr and Nicholas Tyrrell for fruitful discussions and comments. We like to thank the anonmynous referees for their comments, which help to imporve the presentation of this study substantially. This study was supported by the ARC project “Beyond the linear dynamics of the El Nino Southern Oscillation” (DP120101442) and the ARC Centre of Excellence for Climate System Science (CE110001028). The experiments were performed on the NCI National Facility in Canberra, Australia, which is supported by the Australian Commonwealth Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dietmar Dommenget.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Dommenget, D., Frauen, C. et al. ENSO dynamics and diversity resulting from the recharge oscillator interacting with the slab ocean. Clim Dyn 46, 1665–1682 (2016). https://doi.org/10.1007/s00382-015-2667-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2667-1

Keywords

Navigation