Skip to main content
Log in

Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study examines the interannual variability of the North Pacific high during boreal summer of 1979–2008 to understand how its leading modes are related to the two types of El Niño–Southern Oscillation (ENSO). In the observations, the first empirical orthogonal function mode (EOF1) is characterized by an in-phase variation between the western Pacific subtropical high (WPSH) and the northeastern Pacific subtropical high (NPSH), while the second mode (EOF2) is characterized by an out-of-phase WPSH–NPSH variation. The EOF1 mode dominates during the post early-1990s period and is a forced response to sea surface temperature (SST) variations over the maritime continent and tropical central Pacific (CP) regions related to developing CP ENSOs. Its in-phase WPSH–NPSH relationship is established through the ENSO-induced meridional atmospheric circulation, Pacific–North American pattern and eddy–zonal flow interaction over the North Pacific. In contrast, the EOF2 mode dominates prior to the early-1990s and is partially a forced response to tropical Indian Ocean (IO) and eastern Pacific (EP) SST variations related to decaying EP ENSOs and partially a coupled atmosphere–ocean response to western North Pacific SST variations. Of the 28 Atmospheric Model Intercomparison Project models, most (71 %) realistically simulate the EOF1 mode but only a few (14 %) simulate the EOF2 mode. The roughly 50 % underestimation in the strength of the EOF2 mode is due to model deficiencies in properly representing the atmospheric circulation responses to the IO and EP SST variations. This deficiency may be related to underestimations of the strength of the mean Walker circulation in the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Baxter S, Nigam S (2015) Key role of the North Pacific Oscillation–West Pacific pattern in generating the extreme 2013/14 North American winter. J Clim 28:8109–8117. doi:10.1175/JCLI-D-14-00726.1

    Article  Google Scholar 

  • Capotondi A, Wittenberg AT, Newman M, Di Lorenzo E, Yu JY, Braconnot P, Cole J, Dewitte B, Giese B, Guilyardi E, Jin FF, Karnauskas K, Kirtman B, Lee T, Schneider N, Xue Y, Yeh S-W (2015) Understanding ENSO diversity. Bull Am Meteorol Soc 96:921–938. doi:10.1175/BAMS-D-13-00117.1

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13(24):4310–4325

    Article  Google Scholar 

  • Chang P, Zhang L, Saravanan R, Vimont DJ, Chiang JCH, Ji L, Seidel H, Tippett MK (2007) Pacific meridional mode and El Niño–Southern Oscillation. Geophys Res Lett 34:L16608. doi:10.1029/2007GL030302

    Article  Google Scholar 

  • Fang XH, Zheng F, Zhu J (2015) The cloud radiative effect when simulating strength asymmetry in two types of El Niño events using CMIP5 models. J Geophys Res 120(6):4357–4369. doi:10.1002/2014JC010683

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Hartmann DL (2015) Pacific sea surface temperature and the winter of 2014. Geophys Res Lett 42:1894–1902. doi:10.1002/2015GL063083

    Article  Google Scholar 

  • Ho CH, Baik JJ, Kim JH, Gong DY, Sui CH (2004) Interdecadal changes in summertime typhoon tracks. J Clim 17:1767–1776

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting eastern-Pacific and central-Pacific types of El Niño. J Clim 22:615–632

    Article  Google Scholar 

  • Kim ST, Yu JY, Kumar A, Wang H (2012) Examination of the two types of ENSO in the NCEP CFS model and its extratropical associations. Mon Weather Rev 140:1908–1923

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lao NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Kug JS, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005) On the definition of El Niño and associated seasonal average U.S. weather anomalies. Geophys Res Lett 32:L13705. doi:10.1029/2005GL022738

    Article  Google Scholar 

  • Lau NC, Leetmaa A, Nath MJ, Wang HL (2005) Influences of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J Clim 18(15):2922–2942

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central–equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lee EJ, Jhun JG, Park CK (2005) Remote connection of the northeast Asian summer rainfall variation revealed by a newly defined monsoon index. J Clim 18:4381–4393

    Article  Google Scholar 

  • Lu R, Dong DW (2001) Westward extension of North Pacific subtropical high in summer. J Meteorol Soc Jpn 79:1229–1241

    Article  Google Scholar 

  • Mo KC (2010) Interdecadal modulation of the impact of ENSO on precipitation and temperature over the United States. J Clim 23:3639–3656. doi:10.1175/2010JCLI3553.1

    Article  Google Scholar 

  • Mo KC, Livezey RE (1986) Tropical–extratropical geopotential height teleconnections during the northern hemisphere winter. Mon Weather Rev 114:2488–2515

    Article  Google Scholar 

  • North GR, Bell TL, Cahalan RF, Moeng FJ (1982) Sampling errors in the estimation of empirical orthogonal function. Mon Weather Rev 110:669–706

    Google Scholar 

  • Paek H, Yu JY, Hwu JW, Lu MM, Gao T (2015) A source of AGCM bias in simulating the western pacific subtropical high: different sensitivities to the two types of ENSO. Mon Weather Rev 143:2348–2362

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384. doi:10.1175/1520-0493(1982)110<0354:VITSST>2.0.CO;2

    Article  Google Scholar 

  • Rasmusson EM, Wang X, Ropelewski CF (1990) The biennial component of ENSO variability. J Mar Syst 1(1):71–96

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407

    Article  Google Scholar 

  • Rogers JC (1981) The North Pacific Oscillation. Int J Climatol 1:39–57. doi:10.1002/joc.3370010106

    Article  Google Scholar 

  • Schott FA, Xie SP, McCreary J (2009) Indian Ocean circulation and climate variability. Rev Geophys 47:RG1002. doi:10.1029/2007RG000245

    Article  Google Scholar 

  • Seager R, Harnik N, Kushnir Y, Robinson W, Miller J (2003) Mechanisms of hemispherically symmetric climate variability. J Clim 16:2960–2978. doi:10.1175/1520-0442(2003)016,2960:MOHSCV.2.0.CO;2

    Article  Google Scholar 

  • Sui CH, Chung PH, Li T (2007) Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys Res Lett 34:L11701

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Walker GT, Bliss EW (1932) World Weather V Mem. R Meteorol Soc 4:53–84

    Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the Southern Oscillation as revealed by a waveform and a wavelet transform. J Clim 9:1586–1598. doi:10.1175/1520-0442(1996)009<1586:TSOTSO>2.0.CO;2

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific–East Asian teleconnection: how does ENSO affect East Asian Climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang SY, L’Heureux M, Chia HH (2012) ENSO prediction one year in advance using western North Pacific sea surface temperatures. Geophys Res Lett 39:L05702. doi:10.1029/2012GL050909

    Google Scholar 

  • Wang B, Xiang B, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. PNAS 110:2718–2722

    Article  Google Scholar 

  • Wang SY, Hipps L, Gillies RR, Yoon JH (2014) Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys Res Lett 41:3220–3226. doi:10.1002/2014GL059748

    Article  Google Scholar 

  • Wu L, Wang B, Geng S (2005) Growing typhoon influence on East Asia. Geophys Res Lett 32:L18703. doi:10.1029/2005GL022937

    Google Scholar 

  • Wu B, Zhou T, Li T (2009) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005. doi:10.1175/2008JCLI2710.1

    Article  Google Scholar 

  • Xie SP, Hu K, Hafner J, Tokinaga H, Du Y, Huang G, Sampe T (2009) Indian ocean capacitor effect on Indo-Western Pacific climate during the summer following El Niño. J Clim 22(3):730–747

    Article  Google Scholar 

  • Yu JY (2005) Enhancement of ENSO’s persistence barrier by biennial variability in a coupled atmosphere–ocean general circulation model. Geophys Res Lett 32:L13707. doi:10.1029/2005GL023406

    Article  Google Scholar 

  • Yu JY, Kao HY (2007) Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958–2001. J Geophys Res 112:D13106

    Article  Google Scholar 

  • Yu JY, Kim ST (2011) Relationships between extratropical sea level pressure variations and the central-Pacific and eastern-Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu JY, Lau KM (2005) Contrasting Indian Ocean SST variability with and without ENSO influence: a coupled atmosphere–ocean GCM study. Meteorol Atmos Phys 90(3–4):179–191

    Article  Google Scholar 

  • Yu JY, Zou Y (2013) The enhanced drying effect of central-Pacific El Niño on US winter. Environ Res Lett 8(1):014019. doi:10.1088/1748-9326/8/1/014019

    Article  Google Scholar 

  • Yu JY, Weng SP, Farrara JD (2003) Ocean roles in the TBO transitions of the Indian–Australian monsoon system. J Clim 16(18):3072–3080

    Article  Google Scholar 

  • Yu JY, Kao HY, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the central equatorial Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Yu JY, Lu MM, Kim ST (2012a) A change in the relationship between tropical central Pacific SST variability and the extratropical atmosphere around 1990. Environ Res Let 7:1–6. doi:10.1088/1748-9326/7/3/034025

    Google Scholar 

  • Yu JY, Zou Y, Kim ST, Lee T (2012b) The changing impact of El Niño on US winter temperatures. Geophys Res Lett 39:L15702. doi:10.1029/2012GL052483

    Article  Google Scholar 

  • Yu JY, Kao PK, Paek H, Hsu HH, Hung CW, Lu MM, An SI (2015a) Linking emergence of the central-Pacific El Niño to the Atlantic multi-decadal oscillation. J Clim 28:651–662. doi:10.1175/JCLI-D-14-00347.1

    Article  Google Scholar 

  • Yu JY, Paek H, Saltzman ES, Lee T (2015b) The early-1990s change in ENSO–PSA–SAM relationships and its impact on southern hemisphere climate. J Clim 28:9393–9408. doi:10.1175/JCLI-D-15-0335.1

    Article  Google Scholar 

  • Yu JY, Wang X, Yang S, Paek H, Chen M (2016) Changing El Niño–Southern Oscillation and associated climate extremes, climate extremes: mechanisms and potential prediction. In: Wang S et al (eds) AGU monograph. American Geophysical Union, Washington

    Google Scholar 

  • Yun KS, Ha KJ, Yeh SW, Wang B, Xiang B (2015) Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Clim Dyn 44:1979–1992. doi:10.1007/s00382-014-2193-6

    Article  Google Scholar 

  • Zheng F, Fang XH, Yu JY, Zhu J (2014) Asymmetry of the Bjerknes positive feedback between the two types of El Niño. Geophys Res Lett 41:7651–7657. doi:10.1002/2014GL062125

    Article  Google Scholar 

  • Zou Y, Yu JY, Lee T, Lu MM, Kim ST (2014) CMIP5 model simulations of the impacts of the two types of El Niño on US winter temperature. J Geophys Res Atmos 119:3076–3092. doi:10.1002/2013JD021064

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank two anonymous reviewers and Editor Ben Kirtman for their very constructive comments that have helped improve the paper. This research was supported by National Science Foundation’s Climate and Large Scale Dynamics Program under Grants AGS-1233542 and AGS-1505145. The NCEP/NCAR Reanalysis dataset was downloaded from www.esrl.noaa.gov/psd/, the HadISST dataset from www.metoffice.gov.uk/hadobs/hadisst/, and the AMIP model outputs from https://pcmdi9.llnl.gov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houk Paek.

Additional information

This paper is a contribution to the special collection on ENSO Diversity. The special collection aims at improving understanding of the origin, evolution, and impacts of ENSO events that differ in amplitude and spatial patterns, in both observational and modeling contexts, and in the current as well as future climate scenarios. This special collection is coordinated by Antonietta Capotondi, Eric Guilyardi, Ben Kirtman and Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paek, H., Yu, JY., Zheng, F. et al. Impacts of ENSO diversity on the western Pacific and North Pacific subtropical highs during boreal summer. Clim Dyn 52, 7153–7172 (2019). https://doi.org/10.1007/s00382-016-3288-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3288-z

Keywords

Navigation