Skip to main content
Log in

Critical role of boreal summer North Pacific subtropical highs in ENSO transition

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The quasi-biennial (QB)-type El Niño-Southern Oscillation (ENSO), showing a fast phase transition from El Niño to La Niña, is closely related to the variability of the North Pacific subtropical high (NPSH) and western North Pacific subtropical high (WNPSH) during summer. Here, we show that the NPSH plays a key role in the fast ENSO transition. The QB-type ENSO is associated with both strengthened WNPSH and NPSH during the boreal summer. By contrast, the low-frequency-type ENSO, which occurs in a typical period of 3–7 years, displays an enhanced WNPSH but weakened NPSH. The stronger El Niño tends to generate a more intensified WNPSH from spring to summer, leading to the initial decay of El Niño via the modulation of easterly wind in the western Pacific. On the contrary, the NPSH has greater linkage with the decaying El Niño process after the boreal summer. Therefore, the coupled pattern of WNPSH–NPSH is important in changing ENSO phase from El Niño to La Niña. The NPSH causes sea surface temperature cooling over the subtropical Northeastern Pacific. The resultant subtropical cooling induces anomalous anticyclone west of the reduced heating, which generates the strengthening of trade winds south of the anticyclone. Consequently, this process contributes to tropical central Pacific cooling and the rapid transition of El Niño to La Niña. This study hints that the QB-type ENSO could be significantly linked to a tropics-midlatitudes coupled system such as an in-phase pattern between WNPSH and NPSH. The results are useful for improvement of ENSO prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adler RF, Huffman GJ, Chang A et al (2003) The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-Present). J Hydrometeor 4:1147–1167

    Article  Google Scholar 

  • Barnett TP (1991) The interaction of multiple time scales in the tropical climate system. J Clim 4:269–285

    Article  Google Scholar 

  • Bejarano L, Jin FF (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067

    Article  Google Scholar 

  • Carton JA, Giese BS (2008) A reanalysis of ocean climate using simple ocean data assimilation (SODA). Mon Wea Rev 136:2999–3017

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325

    Article  Google Scholar 

  • Chen W, Park J-K, Dong B, Lu R, Jung W-S (2012) The relationship between El Niño and the western North Pacific summer climate in a coupled GCM: role of the transition of El Niño decaying phases. J Geophys Res 117:D12111. doi:10.1029/2011JD017385

    Google Scholar 

  • Danabasoglu G, Large WG, Tribbia JJ, Gent PR, Briegleb BP, McWilliams JC (2006) Diurnal coupling in the tropical oceans of CCSM3. J Clim 19:2347–2365

    Article  Google Scholar 

  • Ha K-J, Yoon S-J, Yun K-Y, Kug J-S, Jang Y-S, Chan JCL (2012) Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific. Theor Appl Climatol 109:383–395

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woollen J, Yang SK, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643

    Article  Google Scholar 

  • Kim K-Y, Kim Y-Y (2002) Mechanism of Kelvin and Rossby waves during ENSO events. Meteorol Atmos Phys 81:169–189

    Article  Google Scholar 

  • Kim K-M, Lau K-M (2001) Dynamics of monsoon-induced biennial variability in ENSO. Geophys Res Lett 28(2):315–318

    Article  Google Scholar 

  • Kosaka Y, Xie S-P, Lau N-C, Vecchi GA (2013) Origin of seasonal predictability for summer climate over the Northwestern Pacific. Proc Natl Acad Sci USA 110(19):7574–7579

    Article  Google Scholar 

  • Kug J-S, Kang I-S (2006) Interactive feedback between ENSO and the Indian Ocean. J Clim 19:1784–1801

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Lau K-M, Lee J-Y, Kim K-M, Kang I-S (2004) The north Pacific as a regulator of summertime climate over Eurasia and North America. J Clim 17:819–833

    Article  Google Scholar 

  • Lee T, McPhaden MJ (2010) Increasing intensity of El Niño in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lee S-S, Seo Y-W, Ha K-J, Jhun J-G (2013) Impact of the western North Pacific subtropical high on the East Asian monsoon precipitation and the Indian Ocean precipitation in the boreal summertime. Asia-Pac J Atmos Sci 49(2):171–182

    Article  Google Scholar 

  • Li T, Zhang Y (2002) Processes that determine the quasi-biennial and lower-frequency variability of the South Asian monsoon. J Meteor Soc Japan 80(5):1149–1163

    Article  Google Scholar 

  • Li Y, Lu R, Dong B (2007) The ENSO-Asian monsoon interaction in a coupled Ocean–Atmosphere GCM. J Clim 20:5164–5177

    Article  Google Scholar 

  • Liu C-Z, Xue F (2010a) The Decay of El Niño with different intensity. Part I, the decay of the strong El Niño. Chin J Geophys 53:14–25

    Article  Google Scholar 

  • Liu C-Z, Xue F (2010b) The Decay of El Niño with different intensity. Part II, the decay of the moderate and relatively-weak El Niño. Chin J Geophys 53:915–925

    Article  Google Scholar 

  • Liu Z, Yang H (2003) Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys Res Lett 30(5):1230. doi:10.1029/2002GL016492

    Article  Google Scholar 

  • Lopez H, Kirtman BP (2013) Westerly wind bursts and the diversity of ENSO in CCSM3 and CCSM4. Geophys Res Lett 40:4722–4727. doi:10.1002/grl.50913

    Article  Google Scholar 

  • McGregor S, Timmermann A, Schneider N, Studecker MF, England MH (2012) The effect of the South Pacific convergence zone on the termination of El Nino events and the meridional asymmetry of ENSO. J Clim 25:5566–5586

    Article  Google Scholar 

  • Meehl GA (1997) The South Asian monsoon and the tropospheric biennial oscillation. J Clim 10:1921–1943

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Rodwell M, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Roeckner E et al (1996) The atmospheric general circulation model ECHAM-4: model description and simulation of present-day climate. Max Planck Institute for Meteorology Rep 218: 90 pp

  • Seager R, Murtugudde R, Raik N, Clement A, Gordon N, Miller J (2003) Air-sea interaction and the seasonal cycle of the subtropical anticyclones. J Clim 16:1948–1966

    Article  Google Scholar 

  • Shen S, Lau K-M (1995) Biennial oscillation associated with the East Asian summer monsoon and tropical sea surface temperature. J Meteor Soc Japan 73:105–124

    Google Scholar 

  • Smith RD, Dukowicz JK, Malone RC (1992) Parallel ocean general circulation modeling. Physica D 60:38–61

    Article  Google Scholar 

  • Suarez MJ, Schopf PS (1988) A delayed action oscillator for ENSO. J Atmos Sci 45:3283–3287

    Article  Google Scholar 

  • Sui C-H, Chung P-H, Li T (2007) Interannual and interdecadal variability of the summertime western North Pacific subtropical high. Geophys Res Lett 34:L11701. doi:10.1029/2006GL029204

    Article  Google Scholar 

  • Valcke S, Terray L, Piacentini A (2000) OASIS 2.4 Ocean atmospheric sea ice soil user’s guide, Version 2.4. CERFACS Tech Rep CERFACS TR/CMGC/00-10: 85 pp

  • Vimont DJ, Wallace JM, Battisti DS (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont DJ, Alexander M, Fontaine A (2009) Midlatitude excitation of tropical variability in the Pacific: the role of thermodynamic coupling and seasonality. J Clim 22:518–534

    Article  Google Scholar 

  • Wang B, An S-I (2005) A method for detecting season-dependent modes of climate variability: S-EOF analysis. Geophys Res Lett 32:L15710. doi:10.1029/2005GL022709

    Article  Google Scholar 

  • Wang B, Li T (2004) East Asian monsoon-ENSO interactions. In: Chang C-P (ed) East Asian monsoon. World Scientific, Singapore, pp 177–212

    Chapter  Google Scholar 

  • Wang B, Wu R, Lukas R (1999) Roles of the western North Pacific wind variation in thermocline adjustment and ENSO phase transition. J Meteor Soc Japan 77:1–16

    Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B, Xiang B, Lee J-Y (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. Proc Natl Acad Sci USA 110(8):2718–2722

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) A western Pacific oscillator paradigm for the El Niño-Southern Oscillation. Geophys Res Lett 24(7):779–782

    Article  Google Scholar 

  • Wu R, Kirtman BP (2004) The tropospheric biennial oscillation of the monsoon—ENSO system in an interactive ensemble coupled GCM. J Clim 17:1623–1640

    Article  Google Scholar 

  • Xiang B, Wang B, Ding Q, Jin F-F, Fu X, Kim H-J (2012) Reduction of the thermocline feedback associated with mean SST bias in ENSO simulation. Clim Dyn 39:1413–1430. doi:10.1007/s00382-011-1164-4

    Article  Google Scholar 

  • Xiang B, Wang B, Yu W, Xu S (2013) How can anomalous western North Pacific subtropical high intensify in late summer? Geophys Res Lett 40(10):2349–2354. doi:10.1002/grl.50431

    Article  Google Scholar 

  • Yasunari T (1990) Impact of Indian monsoon on the coupled atmosphere/ocean system in the tropical Pacific. Meteorol Atmos Phys 44:29–41

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F-F (2009) El Niño in a changing climate. Nature 461:511–514. doi:10.1038/nature08316

    Article  Google Scholar 

  • Yu J-Y, Kim S-T (2011) Relationships between extratropical sea level pressure variations and the central Pacific and eastern Pacific types of ENSO. J Clim 24:708–720

    Article  Google Scholar 

  • Yu J-Y, Kao H-Y, Lee T (2010) Subtropics-related interannual sea surface temperature variability in the equatorial central Pacific. J Clim 23:2869–2884

    Article  Google Scholar 

  • Yun K-S, Ren B, Ha K-J, Chan JCL, Jhun J-G (2009) The 30–60-day oscillation in the East Asian summer monsoon and its time-dependent association with the ENSO. Tellus 61A:565–578

    Article  Google Scholar 

  • Yun K-S, Kim S-Y, Ha K-J, Watanabe M (2011) Effects of subseasonal basic state changes on Rossby wave propagation during northern summer. J Geophys Res 116:D24102. doi:10.1029/2011JD016258

    Google Scholar 

  • Yun K-S, Yeh S-W, Ha K-J (2013) Distinct impacts of tropical SSTs on summer North Pacific high and western North Pacific subtropical high. J Geophys Res 118:4107–4116. doi:10.1002/jgrd.50253

    Google Scholar 

Download references

Acknowledgments

This study was financially supported by GRL grant of the National Research Foundation (NRF) funded by the Korean Government (MEST 2011-0021927). B. Xiang was partly supported by NOAA MAPP Program under Awards NA12OAR4310075. S.-W. Yeh is supported by the Brain Korea 21 Plus Project in Department of Marine Sciences and Convergent Technology of Hanyang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ja Ha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, KS., Ha, KJ., Yeh, SW. et al. Critical role of boreal summer North Pacific subtropical highs in ENSO transition. Clim Dyn 44, 1979–1992 (2015). https://doi.org/10.1007/s00382-014-2193-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2193-6

Keywords

Navigation