Skip to main content
Log in

Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The patterns of interannual variability that arise from the slow (potentially predictable) and fast or intraseasonal (unpredictable) components of seasonal mean precipitation over eastern China are examined, based on observations from a network of 106 stations for the period 1951–2004. The analysis is done by using a variance decomposition method that allows identification of the sources of the predictability and the prediction uncertainty, from March–April–May (MAM) to September–October–November (SON). The average potential predictability (ratio of slow-to-total variance) of eastern China precipitation is generally moderate, with the highest value of 0.18 in June–July–August (JJA) and lowest value of 0.12 in April–May–June (AMJ). The leading predictable precipitation mode is significantly related to one-season-lead SST anomalies in the area of the Kuroshio Current during AMJ-to-JJA, the Indian-western Pacific SST in July–August–September (JAS), and the eastern tropical Pacific SST in MAM and SON. The prolonged linear trends, which are seen in the principal component time series associated with the second or third predictable precipitation modes in MJJ-to-ASO, also serve as a source of predictability for seasonal precipitation over eastern China. The predictive characteristics of the atmospheric circulation–precipitation relationship indicate that the western Pacific subtropical high plays a key role in eastern China precipitation. In addition, teleconnection patterns that are significantly related to the predictable precipitation component are also identified. The leading/second unpredictable precipitation modes from MAM to SON all show a monopole/dipole structure, which are accompanied by wavy circulation patterns that are related to intraseasonal events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Barnett TP (1985) Variations in near-global sea level pressure. J Atmos Sci 42:478–501

    Article  Google Scholar 

  • Chang CP, Zhang Y, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part II: meridional structure of the monsoon. J Clim 13:4326–4340

    Article  Google Scholar 

  • Chen Y, Zhai P (2014) Precursor circulation features for persistent extreme precipitation in Central-Eastern China. Wea Forecast 29:226–240. doi:10.1175/WAF-D-13-00065.1

    Article  Google Scholar 

  • Chen TC, Yen MC, Weng SP (2000) Interaction between the summer monsoon in East Asia and the South China Sea: intraseasonal monsoon modes. J Atmos Sci 57:1373–1392

    Article  Google Scholar 

  • Chen G, Li W, Yuan Z, Wen Z (2005) Evolution mechanisms of the intraseasonal oscillation associated with the Yangtze River Basin flood in 1998. Sci China Earth Sci 48:957–967

    Article  Google Scholar 

  • Chen SX, Gong YF, Wang X (2009) The relationship between the atmospheric low-frequency oscillation over Asia and the flood in the Huaihe River Valley in the summer of 2007. Chin J Atmos Sci 69:463–472 (in Chinese)

    Google Scholar 

  • Chen JP, Wen ZP, Wu RG, Chen ZS, Zhao P (2013) Interdecadal changes in the relationship between Southern China winter-spring precipitation and ENSO. Clim Dyn. doi:10.1007/s00382-013-1947-x

    Google Scholar 

  • Chen G, Wei F, Zhou X (2014a) Intraseasonal oscillation of the South China Sea summer monsoon and its influence on the regionally persistent heavy rain over southern China. J Meteor Res 28(2):213–229. doi:10.1007/s13351-014-3063-1

    Article  Google Scholar 

  • Chen YN, Deng H, Li B, Li Z, Xu C (2014b) Abrupt change of temperature and precipitation extremes in the arid region of Northwest China. Quat Int 336:35–43

    Article  Google Scholar 

  • Chen Q, Xu L, Cai H (2015) Impact of stratospheric sudden warming on East Asian winter monsoons. Adv Meteorol 2015:640912–640921

    Google Scholar 

  • Choi K, Kang S, Kim H (2013) Spatialtemporal variability of April rainfall in Korea by western Pacific teleconnection patter. Int J Climatol 33:1168–1177

    Article  Google Scholar 

  • Deng Y, Gao T, Gao H, Yao X, Xie L (2014) Regional precipitation variability in East Asia related to climate and environmental factors during 1979–2012. Sci Rep 4:5693. doi:10.1038/srep05693

    Google Scholar 

  • Ding YH (1990) Build-up, air mass transformation and propagation of Siberian high and its relations to cold surge in East Asia. Meteorol Atmos Phys 44:281–292. doi:10.1007/BF01026822

    Article  Google Scholar 

  • Ding YH (1994) Monsoons over china. Kluwer, Dordrecht

    Google Scholar 

  • Ding YH, Chan JCL (2005) The East Asia summer monsoon: an overview. Meteorol Atmos Phys 89:117–142. doi:10.1007/s00703-005-0125-z

    Article  Google Scholar 

  • Ding YH, Wang Z, Sun Y (2007) Inter-decadal variation of the summer precipitation in East China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int J Climatol 28:1139–1161. doi:10.1002/joc.1615

    Article  Google Scholar 

  • Fan K, Wang HJ (2004) Antarctic oscillation and the dust weather frequency in North China. Geophys Res Lett 31:L10201

    Article  Google Scholar 

  • Feng J, Li JP (2011) Influence of El Nino Modoki on spring rainfall over south China. J Geophys Res 116:D13012. doi:10.1029/2010JD015160

    Article  Google Scholar 

  • Frederiksen JS (1983) A unified three-dimensional instability theory of the onset of blocking and cyclogenesis. II: teleconnection patterns. J Atmos Sci 40:2593–2609

    Article  Google Scholar 

  • Frederiksen JS, Bell RC (1987) Teleconnection patterns and the roles of baroclinic and topographic instability. J Atmos Sci 44:2200–2218

    Article  Google Scholar 

  • Frederiksen CS, Frederiksen JS (1992) Northern Hemisphere storm tracks and teleconnection patterns in primitive equation and quasigeostrophic models. J Atmos Sci 49:1443–1458

    Article  Google Scholar 

  • Frederiksen JS, Frederiksen CS (1993) Monsoon disturbances, intraseasonal oscillations, teleconnection patterns, blocking and storm tracks of the global atmosphere during January 1979: linear theory. J Atmos Sci 50:1349–1372

    Article  Google Scholar 

  • Frederiksen CS, Zheng X (2000) Chaos, potential predictability and model validation of climate variations. Aust NZ Ind Appl Math J 42E:C608–C626

    Google Scholar 

  • Frederiksen CS, Zheng XG (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 2, application to NH winter circulations. Clim Dyn 23:193–206

    Article  Google Scholar 

  • Frederiksen CS, Zheng X (2007) Coherent patterns of interannual variability of the atmospheric circulation: the role of intraseasonal variability. In: Denier J, Frederiksen JS (eds) Frontiers in turbulence and coherent structures, World scientific lecture notes in complex systems, vol 6. World Scientific, Singapore, pp 87–120

    Chapter  Google Scholar 

  • Fu CB, Jiang ZH, Guan ZY, He JH, Xu ZF (2008) Interannual variability of summer climate of china in association with ENSO and the Indian Ocean Dipole. In: Regional climate studies of China. Springer, Berlin, Heidelberg, pp 119–154. doi:10.1007/978-3-540-79242-0_4

  • Gao H, Xue F, Wang H (2003) Influence of interannual variability of Antarctic oscillation on Meiyu along the Yangtze and Huaihe River valley and its importance to prediction. Chin Sci Bull 48(Supp. II):61–67

    Google Scholar 

  • Gong D, Ho C (2002) Shift in the summer rainfall over the Yangtze River Valley in the late 1970s. Geophys Res Lett 29:1436–1439. doi:10.1029/2001GL014523

    Article  Google Scholar 

  • Gong D, Ho C (2003) Arctic oscillation signals in the East Asian summer monsoon. J Geophys Res 108(D2):4066. doi:10.1029/2002JD002193

    Article  Google Scholar 

  • Gong D, Wang S (2003) Influence of Arctic Oscillation on winter climate over China. J Geog Sci 13(2):208–216

    Article  Google Scholar 

  • Gong D, Wang S, Zhu J (2001) East Asian winter monsoon and Arctic Oscillation. Geophys Res Lett 28(10):2073–2076

    Article  Google Scholar 

  • Gong D, Yang J, Kim S-J, Gao Y, Guo D, Zhou T, Hu M (2011) Spring Arctic Oscillation-East Asian summer monsoon connection through circulation changes over the western North Pacific. Clim Dyn 37(11–12):2199–2216

    Article  Google Scholar 

  • Grainger S, Frederiksen CS, Zheng X (2009) Estimating the potential predictability of Australian surface maximum and minimum temperature. Clim Dyn 32(4):443–455

    Article  Google Scholar 

  • Grainger S, Frederiksen CS, Zheng X (2013) Modes of interannual variability of Southern Hemisphere atmospheric circulation in CMIP3 models: assessment and projections. Clim Dyn 41:479–500

    Article  Google Scholar 

  • Guan Z, Yamagata T (2003) The unusual summer of 1994 in East Asia: IOD teleconnections. Geophys Res Lett 30:1544. doi:10.1029/2002GL016831

    Article  Google Scholar 

  • Guan Z, Ashok K, Yamagata T (2003) Summer-time response of the tropical atmosphere to the Indian Ocean dipole sea surface temperature anomalies. J Meteor Soc Jpn 81:531–561

    Article  Google Scholar 

  • Han JP, Wang HJ (2007) Interdecadal variability of the East Asian summer monsoon in an AGCM. Adv Atmos Sci 24:808–818. doi:10.1007/s00376-007-0808-0

    Article  Google Scholar 

  • He J, Lin H, Wu Z (2011) Another look at influences of the Madden-Julian oscillation on thewintertimeEastAsian weather. J Geophys Res 116:D03109. doi:10.1029/2010JD014787

    Article  Google Scholar 

  • He Z, Wu R, Wang W (2015) Signals of the South China Sea summer rainfall variability in the Indian Ocean. Clim Dyn. doi:10.1007/s00382-015-2760-5

    Google Scholar 

  • Huang RH, Sun FY (1994) Impacts of the thermal state and the convective activities in the tropical western Pacific warm pool on the summer climate anomalies in East Asia. Sci Atmos Sin 18(2):141–151 (in Chinese)

    Google Scholar 

  • Jia X, Chen L, Ren F, Li C (2011) Impacts of the MJO on winter rainfall and circulation in China. Adv Atmos Sci 28:521–533. doi:10.1007/s00376-010-9118-z

    Article  Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:431–471

    Article  Google Scholar 

  • Kang SH, Lu J (2012) Expansion of the Hadley cell under global warming: winter versus summer. J Clim 25:8387–8393

    Article  Google Scholar 

  • Lau KM, Yang G, Shen SH (1988) Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon Weather Rev 116:18–37

    Article  Google Scholar 

  • Li C, Ma H (2012) Relationship between ENSO and winter rainfall over southeast China and its decadal variability. Adv Atmos Sci 29(6):1129–1141

    Article  Google Scholar 

  • Li CY, Mu MQ (2001) The dipole in the equatorial Indian Ocean and its impacts on Climate. Chin J Atmos Sci 25:433–443

    Google Scholar 

  • Li CX, Wang CZ (2014) Simulated impacts of two types of ENSO events on tropical cyclone activity in the western North Pacific: large-scale atmospheric response. Clim Dyn 42:2727–2743

    Article  Google Scholar 

  • Li B, Zhou TJ (2011) ENSO-related principal interannual variability modes of early and late summer rainfall over East Asia in SST driven AGCM simulations. J Geophys Res 116:D14118. doi:10.1029/2011JD015691

    Article  Google Scholar 

  • Li Z, Sun Z, Ni D, Zeng G (2004) Impacts of previous winter Kuroshio SSTA on summer rainfall in China. Acta Meteorol Sin 19:76–82

    Google Scholar 

  • Li J, Yu R, Zhou T (2008) Teleconnection between NAO and climate downstream of the Tibetan Plateau. J Clim 21(8):4680–4690

    Article  Google Scholar 

  • Li H, Dai A, Zhou T (2010) Responses of East Asian summer monsoon to historical SST and atmospheric forcing during 1950–2000. Clim Dyn 34:501–514. doi:10.1007/s00382-008-0482-7

    Article  Google Scholar 

  • Linderholm HW, Ou T, Jeong J-H, Folland CK, Gong D, Liu H, Liu Y, Chen D (2011) Interannual teleconnections between the summer North Atlantic Oscillation and the summer East Asian Monsoon. J Geophys Res 116:D13107

    Article  Google Scholar 

  • Liu YQ, Ding YH (1995) Reappraisal of influence of ENSO events on seasonal precipitation and temperature in China. Chin J Atmos Sci 19(2):200–208 (in Chinese)

    Google Scholar 

  • Liu D, Yang Z (2010) Mechanism responsible for the impact of Madden-Julian oscillation on the wintertime rainfall over eastern China. Sci Meteor Sin 30:684–693

    Google Scholar 

  • Lu E, Ding YH (1996) Low frequency oscillation in East Asia during the 1991 excessively heavy rain over Changjiang-Huaihe River Basin. Acta Meteorol Sin 19:200–208

    Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Madden RA (1976) Estimates of the natural variability of time averaged sea-level pressure. Mon Weather Rev 104:942–952. doi:10.1175/1520-0493(1976)104<0942:EOTNVO>2.0.CO;2

    Article  Google Scholar 

  • Mao J, Chan JCL (2005) Intraseasonal variability of the South China Sea summer monsoon. J Clim 18:2388–2402

    Article  Google Scholar 

  • Mao J, Wu G (2005) Intraseasonal variability in the Yangtze-Huaihe River Valley and subtropical high during the 1991 Meiyu period. Acta Meteorol Sin 63:762–770 (in Chinese)

    Google Scholar 

  • Mao J, Wu G (2006) Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Clim Dyn 27:815–830

    Article  Google Scholar 

  • Mao J, Sun Z, Wu G (2010) 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Clim Dyn 34:747–761. doi:10.1007/s00382-009-0628-2

    Article  Google Scholar 

  • Quan XW, Diaz HF, Hoerling MP (2004) Change of the tropical Hadley cell since 1950. In: Diaz HF, Bradley RS (eds) Hadley circulation: past, present, and future. Cambridge University Press, New York, pp 85–120

  • Rayner NA, Parker DE, Folland CK, Alexander LV, Horton EB, Rowell DP (2003) Globally complete analyses of sea-surface temperature, sea-ice and marine air temperature, 1871–2000. J Geophys Res 108:4407

    Article  Google Scholar 

  • Saji NH, Yamagata T (2003) Possible impacts of Indian Ocean Dipole mode events on global climate. Clim Res 25:151–169

    Article  Google Scholar 

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Tsou CH, Hsu PC, Kau WS, Hsu HH (2005) Northward and northwestward propagation of 30–60 day oscillation in the tropical and extratropical western North Pacific. J Meteorol Soc Jpn 83:711–726

    Article  Google Scholar 

  • Wang HJ (2001) The weakening of the Asian monsoon circulation after the end of 1970s. Adv Atmos Sci 18:376–386

    Article  Google Scholar 

  • Wang L, Chen W (2014) An intensity index for the East Asian winter monsoon. J Clim 27(6):2361–2374

    Article  Google Scholar 

  • Wang B, Li T (2004) East Asian monsoon-ENSO interactions. In: Chang CP (ed) East Asian monsoon. World Scientific, Singapore, pp 177–212

    Chapter  Google Scholar 

  • Wang B, Linho (2002) Rainy season of the Asian-Pacific summer Monsoon. J Clim 15:386–398

    Article  Google Scholar 

  • Wang Y, Zhou L (2005) Observed trends in extreme precipitation events in China during 1961–2001 and the associated changes in large-scale circulation. Geophys Res Lett 32:L09707. doi:10.1029/2005GL022574

    Article  Google Scholar 

  • Wang B, Wu R, Fu X (2000) Pacific-East Asia teleconnection: how does ENSO affect East Asian climate? J Clim 13:1517–1536

    Article  Google Scholar 

  • Wang B et al (2008a) How accurately do coupled climate models predict the leading modes of Asian-Australian monsoon interannual variability? Clim Dyn 30:605–619

    Article  Google Scholar 

  • Wang B, Yang J, Zhou TJ, Wang B (2008b) Interdecadal changes in the major modes of Asian-Australian Monsoon variability: strengthening relationship with ENSO since late 1970s. J Clim 21:1771–1789

    Article  Google Scholar 

  • Wang B, Liu J, Yang J, Zhou T, Wu Z (2009) Distinct principal modes of early and late summer rainfall anomalies in East Asia. J Clim 22:3864–3875

    Article  Google Scholar 

  • Wang B, Xiang B, Lee JY (2013) Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions. PNAS 110:2718–2722

    Article  Google Scholar 

  • Wang B, Lee JY, Xiang B (2015) Asian summer monsoon rainfall predictability: a predictable mode analysis. Clim Dyn 44:61–74. doi:10.1007/s00382-014-2218-1

    Article  Google Scholar 

  • Webster PT, Moore AM, Loschnigg JP, Leben RR (1999) Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997–1998. Nature 401:356–360

    Article  Google Scholar 

  • Wu BY, Wang J (2002a) Possible impacts of winter Arctic Oscillation on Siberian high, the East Asian winter monsoon and sea-ice extent. Adv Atmos Sci 19:297–320. doi:10.1007/s00376-002-0024-x

    Article  Google Scholar 

  • Wu RG, Wang B (2002b) A contrast of the East Asian summer Monsoon-ENSO relationship between 1962–77 and 1978–93. J Clim 15:3266–3279

    Article  Google Scholar 

  • Wu RG, Hu ZZ, Kirtman BP (2003) Evolution of ENSO-related rainfall anomalies in East Asia. J Clim 16:3742–3758

    Article  Google Scholar 

  • Wu B, Zhou T, Li T (2009a) Seasonally evolving dominant interannual variability modes of East Asian climate. J Clim 22:2992–3005

    Article  Google Scholar 

  • Wu Z, Wang B, Li J, Jin FF (2009b) An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO. J Geophys Res 114:D18120. doi:10.1029/2009JD011733

    Article  Google Scholar 

  • Wu B, Li T, Zhou TJ (2010) Relative contributions of the Indian Ocean and local SST anomalies to the maintenance of the western North Pacific anomalous anticyclone during El Nino decaying summer. J Clim 23:2974–2986

    Article  Google Scholar 

  • Wu RG, Yang S, Liu S, Sun L, Lian Y, Gao Z (2011) Northeast China summer temperature and North Atlantic SST. J Geophys Res 116:D16116. doi:10.1029/2011JD015779

    Article  Google Scholar 

  • Wu RG, Yang S, Wen Z, Huang G, Hu K (2012) Interdecadal change in the relationship of southern China summer rainfall with tropical Indo-Pacific SST. Theor Appl Climatol 108:119–133. doi:10.1007/s00704-011-0519-4

    Article  Google Scholar 

  • Xia Y, Guan ZY, Wang LJ (2008) Association of 30–70d oscillations with the heavy rainfall over Changjiang-Huaihe River Valley in summer 2003. J Nanjing Inst Meteorol 21:66–77 (in Chinese)

    Google Scholar 

  • Xiang B, Wang B, Yu W, Xu S (2013) How can anomalous western North Pacific subtropical high intensify in late summer? Geophys Res Lett. doi:10.1002/grl.50431

    Google Scholar 

  • Xiao ZN, Yan HM, Li CY (2002) Relationship between dipole oscillation of SSTA of Indian Ocean region and precipitation and temperature in China. J Trop Meteor 8:121–131

    Google Scholar 

  • Yamagata T, Behera SK, Guan Z (2003) The role of the Indian Ocean in climate forecasting with a particular emphasis on summer conditions in East Asia. In: Proceedings of the ECMWF Workshop, Reading, United Kingdom, ECMWF, pp 102–114

  • Yang FL, Lau KM (2004) Trend and variability of China precipitation in spring and summer: linkage to sea-surface temperatures. Int J Climatol 24(13):1625–1644

    Article  Google Scholar 

  • Yang J, Liu Q, Xie S-P, Liu Z, Wu L (2007) Impact of the Indian Ocean SST basin mode on the Asian summer monsoon. Geophys Res Lett 34:L02708. doi:10.1029/2006GL028571

    Google Scholar 

  • Yang J, Liu Q, Liu Z, Wu L, Huang F (2009) Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection. Geophys Res Lett 36:L19705. doi:10.1029/2009GL039559

    Article  Google Scholar 

  • Yang J, Liu Q, Liu Z (2010) Linking Observations of the Asian Monsoon to the Indian Ocean SST: possible Roles of Indian Ocean Basin Mode and Dipole Mode. J Clim 23:5889–5901

    Article  Google Scholar 

  • Yao Y, Lin H, Wu Q (2015) Subseasonal Variability of Precipitation in China during Boreal Winter. J Clim 28:6548–6559. doi:10.1175/JCLI-D-15-0033.1

    Article  Google Scholar 

  • Ying K, Zheng X, Quan XW, Frederiksen CS (2013) Predictable signals of seasonal precipitation in the Yangtze-Huaihe river valley. Int J Climatol 33:3002–3015. doi:10.1002/joc.3644

    Article  Google Scholar 

  • Ying K, Zhao T, Quan XW, Zheng X, Frederiksen CS (2015) Interannual variability of autumn to spring seasonal precipitation in eastern China. Clim Dyn 45(1–2):253–271

    Article  Google Scholar 

  • Ying K, Zhao T, Zheng X, Quan XW, Frederiksen CS, Li M (2016) Predictable signals in seasonal mean soil moisture simulated with observation-based atmospheric forcing over China. Clim Dyn. doi:10.1007/s00382-015-2969-3

    Google Scholar 

  • Yu R, Wang B, Zhou T (2004) Tropospheric cooling and summer monsoon weakening trend over East Asia. Geophys Res Lett 31:L22212

    Article  Google Scholar 

  • Zeng G, Sun Z, Wei-Chyung W, Min J (2007) Interdecadal variability of the East Asian summer monsoon and associated atmospheric circulations. Adv Atmos Sci 24(5):915–926

    Article  Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2005) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108

    Article  Google Scholar 

  • Zhang RH, Sumi A, Kimoto M (1999) A diagnostic study of the impact of El Nino on the precipitation in China. Adv Atmos Sci 16:229–241

    Article  Google Scholar 

  • Zhang Q, Liu P, Wu GX (2003) The relationship between the flood and drought over the lower reach of the Yangtze River Valley and the SST over the Indian Ocean and the South China Sea. Chin J Atmos Sci 27:992–1006 (in Chinese)

    Google Scholar 

  • Zhang TY, Sun ZB, Li ZX, Wang DY (2007) Relationships between spring Kuroshio and summer rainfall in China. J Trop Meteorol 13:165–168

    Google Scholar 

  • Zhang WJ, Jin FF, Li JP, Ren HL (2011) Contrasting impacts of two-type El Niño over the western North Pacific. J Meteor Soc Jpn 89:563–569

    Article  Google Scholar 

  • Zhao P, Zhou ZJ, Liu JP (2007) Variability of Tibetan spring snow and its associations with the hemispheric extratropical circulation and East Asian summer Monsoon rainfall: an observational investigation. J Clim 20:3942–3955

    Article  Google Scholar 

  • Zhao P, Yang S, Yu R (2010) Long-term changes in rainfall over Eastern China and large-scale atmospheric circulation associated with recent global warming. J Clim 23:1544–1562

    Article  Google Scholar 

  • Zheng X, Frederiksen CS (1999) Validating interannual variability in an ensemble of AGCM simulations. J Clim 12:2386–2396. doi:10.1175/1520-0442(1999)012<2386:VIVAE>2.0.CO;2

    Article  Google Scholar 

  • Zheng X, Frederiksen CS (2004) Variability of seasonal-mean fields arising from intraseasonal variability: part 1. Methodology. Clim Dyn 23:171–191

    Google Scholar 

  • Zheng X, Frederiksen CS (2006) A study of predictable patterns for seasonal forecasting of New Zealand rainfall. J Clim 19:3320–3333. doi:10.1175/JCLI3798.1

    Article  Google Scholar 

  • Zheng X, Nakamura H, Renwick J (2000) Potential predictability of seasonal means based on monthly time series of meteorological variables. J Clim 13:2591–2604

    Article  Google Scholar 

  • Zhou T, Li J (2008) Climate change in China congruent with the linear trends of the annular modes. Atmos Ocean Sci Lett 1:1–7

    Google Scholar 

  • Zhou T, Wu B, Wang B (2009a) How well do atmospheric general circulation models capture the leading modes of the interannual variability of the Asian-Australian Monsoon? J Clim 22:1159–1173

    Article  Google Scholar 

  • Zhou T, Gong D, Li J, Li B (2009b) Detecting and understanding the multi-decadal variability of the East Asian summer Monsoon—recent progress and state of affairs. Meteorol Z 18(4):455–467

    Article  Google Scholar 

  • Zhou LT, Tam CY, Zhou W, Chan CL (2010) Influence of South China Sea SST and the ENSO on winter rainfall over South China. Adv Atmos Sci 27(4):832–844

    Article  Google Scholar 

  • Zhou T, Hsu H-H, Matsuno J (2011) Summer monsoons in East Asia, Indochina, and the western North Pacific. In: Chang C-P et al (eds) The Global Monsoon system: research and forecast, 2nd edn. World Scientific Publishing Co, Singapore, pp 43–72

    Chapter  Google Scholar 

  • Zhu YL (2009) The Antarctic oscillation-East Asian summer monsoon connections in NCEP-1 and ERA-40. Adv Atmos Sci 26(4):707–716. doi:10.1007/s00376-009-8196-2

    Article  Google Scholar 

  • Zhu C, Nakazawa T, Li J, Chen L (2003) The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophys Res Lett 30(18):1952. doi:10.1029/2003GL017817

    Article  Google Scholar 

  • Zhu CW, Wang B, Qian WH, Zhang B (2012) Recent weakening of northern East Asian summer monsoon: a possible response to global warming. Geophys Res Lett 39:L09701

    Article  Google Scholar 

  • Zuo J, Li W, Sun C, Xu L, Ren H (2013) Impact of the North Atlantic Sea surface temperature Tripole on the East Asian summer Monsoon. Adv Atmos Sci 30(4):1173–1186

    Article  Google Scholar 

  • Zuo J, Ren H-L, Li W (2015) Contrasting Impacts of the Arctic Oscillation on Surface Air Temperature Anomalies in Southern China between Early and Middle-to-Late Winter. J Clim 28:4015–4026

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the two anonymous reviewers for their constructive comments, which helped greatly in improving the quality of this manuscript. The in situ observational precipitation data was kindly supplied by National Climate Center, China Meteorological Administration (Dataset link: http://ncc.cma.gov.cn/cn/). This work was supported by National Basic Research Program of China (Grant No. 2012CB956203 & 2016YFA0600400) and National Natural Science Foundation of China for Young Scholar (Grant No. 41405090).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kairan Ying or Tianbao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ying, K., Zheng, X., Zhao, T. et al. Identifying the predictable and unpredictable patterns of spring-to-autumn precipitation over eastern China. Clim Dyn 48, 3183–3206 (2017). https://doi.org/10.1007/s00382-016-3258-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3258-5

Keywords

Navigation