Skip to main content

Advertisement

Log in

Urban warming in the 2013 summer heat wave in eastern China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The impact of urban warming during the 2013 July–August extreme heat wave event across the Yangtze River Delta (YRD) in China was assessed. Using a newly developed high-resolution, land-use dataset, urban stations were identified from a total of 101 stations in the YRD. The difference between urban and non-urban/rural stations indicates that urban warming reached 1.22 °C in the 2013 summer heat wave. The new land-use dataset was then input to the Weather Research and Forecasting model to further understand the dynamical/physical processes of the urban warming during the heat wave. The model-simulated urban warming is ~1.5 °C. Impacts of urbanization on near-surface temperature had strong diurnal variation, reaching a peak at 19:00 LST, around sunset. In the daytime, urban warming was mainly caused by enhanced sensible heat fluxes and longwave radiation from the surface. Because of reduced latent heat flux and increased heat capacity, urban ground stored much more heat than rural ground during the daytime, which is later released as sensible heat flux from the surface at night, leading to the nocturnal urban warming. The simulation results also suggest a positive feedback between urban warming and heat wave intensity, which makes the heat wave more intense in urban than rural areas and the urban warming during the extreme heat wave stronger than its climatological mean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26. doi:10.1002/joc.859

    Article  Google Scholar 

  • Bai L, Ding G, Gu S, Bi P, Su B, Qin D, Xu G, Liu Q (2014) The effects of summer temperature and heat waves on heat-related illness in a coastal city of China, 2011–2013. Environ Res 132:212–219. doi:10.1016/j.envres.2014.04.002

    Article  Google Scholar 

  • Bohnenstengel SI, Evans S, Clark PA, Belcher SE (2011) Simulations of the London urban heat island. Q J R Meteorol Soc 137:1625–1640. doi:10.1002/qj.855

    Article  Google Scholar 

  • Chen F, Dudhia J (2001) Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Mon Weather Rev 129:569–585

    Article  Google Scholar 

  • Chen F, Kusaka H, Bornstein R, Ching J, Grimmond CSB, Grossman-Clarke S, Loridan T, Manning KW, Martilli A, Miao S, Sailor D, Salamanca FP, Taha H, Tewari M, Wang X, Wyszogrodzki AA, Zhang C (2011) The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int J Climatol 31(2):273–288. doi:10.1002/joc.2158

    Article  Google Scholar 

  • Chen F, Yang X, Zhu W (2014) WRF simulations of urban heat island under hot-weather synoptic conditions: the case study of Hangzhou City, China. Atmos Res 138:364–377

    Article  Google Scholar 

  • China Meteorological Administration (2014) China Climate Bulletin for 2013. China Meteorological Administration, 50pp

  • Chou MD, Suarez MJ (1999) A solar radiation parameterization for atmospheric studies. NASA Tech Memo 104606, 12, 40pp

  • Chow WTL, Svoma BM (2011) Analyses of nocturnal temperature cooling-rate response to historical local-scale urban land-use/land cover change. J Appl Meteorol Climatol 50:1872–1883. doi:10.1175/JAMC-D-10-05014.1

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Boville BA, Hack JJ, McCaa JR, Williamson DL, Kiehl JT, Briegleb B (2004) Description of the NCAR Community Atmosphere Model (CAM 3.0). Tech. Rep. NCAR TN-464 + STR, National Center for Atmospheric Research

  • Ding T, Qian W, Yan Z (2010) Changes in hot days and heat waves in China during 1961–2007. Int J Climatol 30:1452–1462. doi:10.1002/joc.1989

    Google Scholar 

  • Fan HL, Sailor DJ (2005) Modeling the impacts of anthropogenic heating on the urban climate of Philadelphia: a comparison of implementations in two PBL schemes. Atmos Environ 39(1):73–84

    Article  Google Scholar 

  • Feng J, Wang J, Yan Z (2014) Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China. Adv Atmos Sci 31(2):363–373

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL, Lüthi D, Schär C (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099

    Article  Google Scholar 

  • Fischer EM, Oleson KW, Lawrence DM (2012) Contrasting urban and rural heat stress responses to climate change. Geophys Res Lett 39(3):L03705. doi:10.1029/2011GL050576

    Article  Google Scholar 

  • Georgescu M, Morefield PE, Bierwagen BG, Weaver CP (2014) Urban adaptation can roll back warming of emerging megapolitan regions. PNAS 111(8):2909–2914

    Article  Google Scholar 

  • Georguscu M (2015) Challenges associated with adaption to future urban expansion. J Clim 28:2544–2563

    Article  Google Scholar 

  • Gong D, Pan Y, Wang J (2004) Changes in extreme daily mean temperatures in summer in eastern China during 1955–2000. Theor Appl Climatol 77:25–37

    Article  Google Scholar 

  • Grimmond CSB, Blackett M, Best MJ, Barlow J, Baik JJ, Belcher SE, Bohnenstengel SI, Calmet I, Chen F, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Pigeon G, Porson A, Ryu YH, Salamanca F, Shashua-Bar L, Steeneveld GJ, Tombrou M, Voogt J, Young D, Zhang N (2010a) The international urban energy balance models comparison project: first results from phase 1. J Appl Meteorol Clim 49:1268–1292

    Article  Google Scholar 

  • Grimmond CSB, Blackett M, Best MJ, Baik JJ, Belcher SE, Beringer J, Bohnenstengel SI, Calmet I, Chen F, Coutts A, Dandou A, Fortuniak K, Gouvea ML, Hamdi R, Hendry M, Kanda M, Kawai T, Kawamoto Y, Kondo H, Krayenhoff ES, Lee SH, Loridan T, Martilli A, Masson V, Miao S, Oleson K, Ooka R, Pigeon G, Porson A, Ryu YH, Salamanca F, Steeneveld GJ, Tombrou M, Voogt JA, Young DT, Zhang N (2010b) Initial results from phase 2 of the international urban energy balance model comparison. Int J Climatol 31:244–272

    Article  Google Scholar 

  • Hong S-Y, Lim JJ (2006) The WRF single-moment 6-class microphysics scheme (WSM6). J Korean Meteorol Soc 42(2):129–151

    Google Scholar 

  • Hong S-Y, Noh Y, Dudhia J (2006) A new vertical diffusion package with an explicit treatment of entrainment processes. Mon Weather Rev 134:2318–2341. doi:10.1175/MWR3199.1

    Article  Google Scholar 

  • Hu YH, Jia GS (2010) Influence of land use change on urban heat island derived from multi-sensor data. Int J Climatol 30(9):1382–1395

    Google Scholar 

  • Hu X-M, Nielsen-Gammon JW, Zhang F (2010) Evaluation of three planetary boundary layer schemes in the WRF model. J Appl Meteorol Climatol 49:1831–1844

    Article  Google Scholar 

  • Hu Y, Jia G, Pohl C, Feng Q, He Y, Gao H, Xu R, van Genderen J, Feng J (2015) Improved monitoring of urbanization processes in China for regional climate impact assessment. Environ Earth Sci 73(12):8387–8404

    Article  Google Scholar 

  • Iacono MJ, Delamere JS, Mlawer EJ, Shephard MW, Clough SA, Collins WD (2008) Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J Geophys Res 113:D13103. doi:10.1029/2008JD009944

    Article  Google Scholar 

  • Ichinose T, Shimodozono K, Hanaki K (1999) Impact of anthropogenic heat on urban climate in Tokyo. Atmos Environ 33:3897–3909. doi:10.1016/S1352-2310(99)00132-6

    Article  Google Scholar 

  • Janjić ZI (1994) The step-mountain eta coordinate model: further development of the convection, viscous sublayer, and turbulent closure schemes. Mon Weather Rev 122:927–945

    Article  Google Scholar 

  • Jiang Z, Song J, Li L, Chen W, Wang Z, Wang J (2012) Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim Change 110(1):385–401. doi:10.1007/s10584-011-0090-0

    Article  Google Scholar 

  • Jin M, Shepherd JM (2005) Inclusion of urban landscape in a climate model: How can satellite data help? Bull Am Meteorol Soc 86(5):681–689. doi:10.1175/BAMS-86-5-681

    Article  Google Scholar 

  • Kain JS (2004) The Kain-Fritsch convective parameterization: an update. J Appl Meteorol 43:170–181

    Article  Google Scholar 

  • Kusaka H, Kimura F (2004) Coupling a single-layer urban canopy model with a simple atmospheric model: impact on urban heat island simulation for an idealized case. J Meteorol Soc Jpn 82:67–80

    Article  Google Scholar 

  • Kusaka H, Kondo K, Kikegawa Y, Kimura F (2001) A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and slab models. Bound Layer Meteorol 101(3):329–358

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2013) Synergistic interactions between urban heat islands and heat waves: the impact in cities is larger than the sum of its parts. J Appl Meteorol Climatol 52:2051–2064. doi:10.1175/JAMC-D-13-02.1

    Article  Google Scholar 

  • Li L, Chen CH, Fu JS, Huang C, Streets DG, Huang HY, Zhang GF, Wang YJ, Jang CJ, Wang HL, Chen YR, Fu JM (2011) Air quality and emissions in the Yangtze River Delta, China. Atmos Chem Phys 11:1621–1639. doi:10.5194/acp-11-1621-2011

    Article  Google Scholar 

  • Li D, Bou-Zeid E, Barlage M, Chen F, Smith JA (2013) Development and evaluation of a mosaic approach in the WRF-Noah framework. J Geophys Res 118(21):11918–11935. doi:10.1002/2013JD020657

    Google Scholar 

  • Liu Y, Chen F, Warner T, Basara J (2006) Verification of a mesoscale data-assimilation and forecasting system for the Oklahoma City area during the Joint Urban 2003 Field Project. J Appl Meteorol Climatol 45:912–929

    Article  Google Scholar 

  • Lo JCF, Lau AKH, Chen F, Fung JCH, Leung KKM (2007) Urban modification in a mesoscale model and the effects on the local circulation in the Pearl River Delta region. J Appl Meteorol Climatol 46:457–476

    Article  Google Scholar 

  • Miao S, Chen F (2014) Enhanced modeling of latent heat flux from urban surfaces in the Noah/single-layer urban canopy coupled model. Sci China Earth Sci 57:2408–2416

    Article  Google Scholar 

  • Miao S, Chen F, LeMone MA, Tewari M, Li Q, Wang Y (2009) An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J Appl Meteorol Climatol 48(3):484–501. doi:10.1175/2008JAMC1909.1

    Article  Google Scholar 

  • Morris CJG, Simmonds I, Plummer N (2001) Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J Appl Meteorol 40:169–182

    Article  Google Scholar 

  • Oke TR (1982) The energetic basis of the urban heat island. Q J R Meteorol Soc 108(455):1–24. doi:10.1002/qj.49710845502

    Google Scholar 

  • Parker DE (2010) Urban heat island effects on estimates of observed climate change. WIREs Clim Change 1(1):123–133. doi:10.1002/wcc.21

    Article  Google Scholar 

  • Sailor DJ, Lu L (2004) A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos Environ 38(17):2737–2748. doi:10.1016/j.atmosenv.2004.01.034

    Article  Google Scholar 

  • Salamanca F, Martilli A, Tewari M, Chen F (2011) A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J Appl Meteorol Climatol 50:1107–1128

    Article  Google Scholar 

  • Salamanca F, Georgescu M, Mahalov A, Moustaoui M (2015) Summertime response of temperature and cooling energy demand to urban expansion in a semiarid environment. J Appl Meteorol Climatol 54:1756–1772

    Article  Google Scholar 

  • Schneider A, Friedl MA, Potere D (2010) Mapping global urban areas using MODIS 500-m data: new methods and datasets based on ‘urban ecoregions’. Remote Sens Environ 114:1733–1746

    Article  Google Scholar 

  • Shepherd JM (2005) A review of current investigations of urban-induced rainfall and recommendations for the future. Earth Interact 9:1–27

    Article  Google Scholar 

  • Skamarock WC, Klemp JB, Dudhia J, Gill DO, Barker DM, Duda MG, Huang X-Y, Wang W, Powers JG (2008) A description of the advanced research WRF version 3Rep. National Center for Atmospheric Research, 113pp

  • Stone B, Hess JJ, Frumkin H (2010) Urban form and extreme heat events: Are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect 118(10):1425–1428

    Article  Google Scholar 

  • Sun J (2014) Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin Sci Bull 59(27):3465–3470. doi:10.1007/s11434-014-0425-0

    Article  Google Scholar 

  • Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G (2014) Rapid increase in the risk of extreme summer heat in Eastern China. Nat Clim Change 4:1082–1085. doi:10.1038/nclimate2410

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs (United Nations 2012) World Urbanization Prospects, the 2011 Revision. http://esa.un.org/unpd/wup/index.htm

  • Wang J, Feng J, Yan Z, Hu Y, Jia G (2012) Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China. J Geophys Res 117:D21103. doi:10.1029/2012JD018226

    Google Scholar 

  • Wang W, Zhou W, Chen D (2014) Summer high temperature extremes in southeast China: bonding with the El Niño-Southern Oscillation and East Asian summer monsoon coupled system. J Clim 27:4122–4138. doi:10.1175/JCLI-D-13-00545.1

    Article  Google Scholar 

  • Wang J, Feng J, Yan Z (2015) Potential sensitivity of warm season precipitation to urbanization extents: modeling study in Beijing–Tianjin–Hebei urban agglomeration in China. J Geophys Res 120(18):9408–9425. doi:10.1002/2015JD023572

    Google Scholar 

  • Yang J, Wang Z, Chen F, Miao S, Tewari M, Voogt JA, Myint S (2015) Enhancing hydrologic modelling in the coupled Weather Research and Forecasting-urban modelling system. Bound Layer Meteorol 155:87–109

    Article  Google Scholar 

  • Zhang SY, Wang SR, Zhang YS, Zhang DK, Song YL (2004) The climate character of high temperature and the prediction in the large cities of east of China. J Trop Meteorol 20(6):750–760

    Google Scholar 

  • Zhang CL, Chen F, Miao SG, Li QC, Xia XA, Xuan CY (2009) Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area. J Geophys Res 114:D02116. doi:10.1029/2008JD010328

    Google Scholar 

  • Zhang N, Gao Z, Wang X, Chen Y (2010) Modeling the impact of urbanization on the local and regional climate in Yangtze River Delta, China. Theor Appl Climatol 102:331–342

    Article  Google Scholar 

  • Zhou Y, Shepherd JM (2010) Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat Hazards 52(3):639–668

    Article  Google Scholar 

  • Zhou T, Ma S, Zou L (2014) Understanding a hot summer in central eastern China: summer 2013 in context of multimodel trend analysis (in “Explaining Extremes of 2013 from a Climate Perspective”). Bull Am Meteorol Soc 95(9):S54–S57

    Google Scholar 

Download references

Acknowledgments

We thank the Earth Observation of Climate Change research group (http://green.tea.ac.cn) for supplying the high-resolution land-use data for China; readers can contact author J. Wang (wangjun@tea.ac.cn) for these data. NCEP-FNL reanalysis data used were produced by NCEP and provided by the National Center for Atmospheric Research at http://rda.ucar.edu/datasets/ds083.2/. Observation data from the heat wave were provided by the National Meteorological Information Center, and are also available from corresponding author Z. Yan (yzw@tea.ac.cn). This study was supported by the National Natural Science Foundation of China (Grant 41475078) and Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences (Grants XDA05090105 and XDA05090207). We acknowledge the two anonymous reviewers for their efforts in evaluating this paper, without which the quality of the paper could not be improved.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongwei Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yan, Z., Quan, XW. et al. Urban warming in the 2013 summer heat wave in eastern China. Clim Dyn 48, 3015–3033 (2017). https://doi.org/10.1007/s00382-016-3248-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3248-7

Keywords

Navigation