Skip to main content

Advertisement

Log in

The complex influence of ENSO on droughts in Ecuador

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, we analyzed the influence of El Niño–Southern Oscillation (ENSO) on the spatio-temporal variability of droughts in Ecuador for a 48-year period (1965–2012). Droughts were quantified from 22 high-quality and homogenized time series of precipitation and air temperature by means of the Standardized Precipitation Evapotranspiration Index. In addition, the propagation of two different ENSO indices (El Niño 3.4 and El Niño 1 + 2 indices) and other atmospheric circulation processes (e.g., vertical velocity) on different time-scales of drought severity were investigated. The results showed a very complex influence of ENSO on drought behavior across Ecuador, with two regional patterns in the evolution of droughts: (1) the Andean chain with no changes in drought severity, and (2) the Western plains with less severe and frequent droughts. We also detected that drought variability in the Andes mountains is explained by the El Niño 3.4 index [sea surface temperature (SST) anomalies in the central Pacific], whereas the Western plains are much more driven by El Niño 1 + 2 index (SST anomalies in the eastern Pacific). Moreover, it was also observed that El Niño and La Niña phases enhance droughts in the Andes and Western plains regions, respectively. The results of this work could be crucial for predicting and monitoring drought variability and intensity in Ecuador.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its possible teleconnection. J Geophys Res Atmos 112:C11007. doi:10.1029/2006JC003798

    Article  Google Scholar 

  • Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge, London

    Book  Google Scholar 

  • Beguería S, Vicente-Serrano SM, Reig F, Latorre B (2014) Standardized Precipitation Evapotranspiration Index (SPEI) revisited: parameter fitting, evapotranspiration models, kernel weighting, tools, datasets and drought monitoring. Int J Climatol 34:3001–3023

    Article  Google Scholar 

  • Bendix J (2000) Precipitation dynamics in Ecuador and northern Peru during the 1991/92 El Nino: a remote sensing perspective. Int J Remote Sens 21:533–548

    Article  Google Scholar 

  • Bendix J, Lauer W (1992) Die Niederschlagsjahreszeiten in Ecuador und ihre klimadynamische interpretation. Erdkunde 46:118–134

    Article  Google Scholar 

  • Bendix J, Trachte K, Palacios E, Rollenbeck R, Göttlicher D, Nauss T, Bendix A (2011) El Niño meets La Niña-anomalous rainfall patterns in the “traditional” El Niño region of Southern Ecuador. Erkunde 65:151–167

    Article  Google Scholar 

  • Borlace S, Cai W, Santoso A (2013) Multidecadal ENSO amplitude variability in a 1000-yr simulation of a coupled global climate model: Implications for observed ENSO variability. J Clim 26:9399–9407

    Article  Google Scholar 

  • Bourma MJ, Dye C (1997) Cycles of malaria associated with El Nino in Venezuela. J Am Med Assoc 3:1772–1774

    Google Scholar 

  • Buytaert W, Celleri R, Willems P, Bièvre BD, Wyseure G (2006) Spatial and temporal rainfall variability in mountainous areas: a case study from the south Ecuadorian Andes. J Hydrol 329:413–421

    Article  Google Scholar 

  • Cai W, Cowan T (2009) La Niña Modoki impacts Australia autumn rainfall variability. Geophys Res Lett 36:L12805. doi:10.1029/2009-GL037885

    Article  Google Scholar 

  • Cai W et al (2014) Increasing frequency of extreme El Niño events due to greenhouse warming. Nat Clim Change 4:111–116

    Article  Google Scholar 

  • Cai W et al (2015) Increased frequency of extreme La Niña events under greenhouse warming. Nat Clim Change 5:132–137

    Article  Google Scholar 

  • Caussinus H, Mestre O (2004) Detection and correction of artificial shifts in climate series. J R Stat Soc Ser C 53(3):405–425. doi:10.1111/j.1467-9876.2004.05155.x

    Article  Google Scholar 

  • Celleri R, Willems P, Buytaert W, Feyen J (2007) Space-time rainfall variability in the Paute basin, Ecuadorian Andes. Hydrol Process 21:3316–3327

    Article  Google Scholar 

  • Changnon SA, Easterling WE (1989) Measuring drought impacts: the Illinois case. Water Resour Bull 25:27–42

    Article  Google Scholar 

  • Chen D et al (2015) Strong influence of westerly wind bursts on El Niño diversity. Nat Geosci 8:339–345

    Article  Google Scholar 

  • Córdoba-Machado S, Palomino-Lemus R, Gámiz-Fortis S, Castro-Díez Y, Esteban-Parra MJ (2015) Assessing the impact of El Niño Modoki on seasonal precipitation in Colombia. Glob Planet Change 124:241–261

    Article  Google Scholar 

  • Dai A (2011) Drought under global warming: a review. Wiley Interdiscip Rev Clim Change 2:45–65

    Article  Google Scholar 

  • Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Article  Google Scholar 

  • Dewitte B, Vazquez-Cuervo J, Goubanova K, Illig S, Takahashi K, Cambon G, Purca S, Correa D, Gutierrez D, Sifeddine A, Ortlieb L (2012) Change in El Niño flavours over 1958–2008: implications for the long-term trend of the upwelling off Peru. Deep Sea Res Part II 77–80:143–156

    Article  Google Scholar 

  • Dommenget D, Bayr T, Frauen C (2013) Analysis of the non-linearity in the pattern and time evolution of El Niño southern oscillation. Clim Dyn 40:2825–2847

    Article  Google Scholar 

  • Droogers P, Allen RG (2002) Estimating reference evapotranspiration under inaccurate data conditions. Irrigat Drain Syst 16:33–45

    Article  Google Scholar 

  • Drumond A, Ambrizzi T (2006) Inter ENSO variability and its influences over the South American Monsoon System. Adv Geosci 6:167–171

    Article  Google Scholar 

  • Francou B, Vuille M, Favier V, Cáceres B (2004) New evidence for an ENSO impact on low-latitude glaciers: Antizana, Andes of Ecuador. J Geophys Res 109:D18106. doi:10.1029/2003JD004484

    Article  Google Scholar 

  • Frauen C, Dommenget D, Tyrrell N, Rezny M, Wales S (2014) Analysis of the nonlinearity of El Niño-Southern Oscillation Teleconnections. J Clim 27:6225–6244

    Article  Google Scholar 

  • Gagnon AS, Smoyer-Tomic KE, Bush ABG (2002) The El Niño southern oscillation and malaria epidemics in South America. J Biometeorol 46:81–89

    Article  Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2002) Comparison of inundation patterns among major South American floodplains. J Geophys Res. doi:10.1029/2000JD000306

    Google Scholar 

  • Hamilton SK, Sippel SJ, Melack JM (2004) Seasonal inundation patterns in two large savanna floodplains of South America: the Llanos de Moxos (Bolivia) and the Llanos del Orinoco (Venezuela and Colombia). Hydrol Process 18:2103–2116

    Article  Google Scholar 

  • Hargreaves GL, Allen RG (2003) History and evaluation of Hargreaves evapotranspiration equation. J Irrig Drain Eng ASCE 129:53–63

    Article  Google Scholar 

  • Hargreaves GL, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1:96–99

    Article  Google Scholar 

  • Haylock MR, Peterson TC, Alves LM et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19:1490–1512

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of Their teleconnections. J Clim 10:1786–1789

    Google Scholar 

  • Huth R (2006) The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus Ser A 58:121–130

    Article  Google Scholar 

  • Jiménez-Muñoz JC, Sobrino JA, Mattar C, Malhi Y (2013) Spatial and temporal patterns of the recent warming of the Amazon forest. J Geophys Res Atmos 118:5204–5215

    Article  Google Scholar 

  • Johnson NC (2013) How many ENSO flavors can we distinguish? J Clim 26:4816–4827

    Article  Google Scholar 

  • Jollife IT (1986) Principal component analysis. Springer, New York

    Book  Google Scholar 

  • Jollife IT (1990) Principal component analysis: a beginner’s guide. Part I: Introduction and application. Weather 45:375–382

    Article  Google Scholar 

  • Kalnay E (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471

    Article  Google Scholar 

  • Kousky VE, Kayano MT (1994) Principal modes of outgoing longwave radiation and 250-mb circulation for the South American sector. J Clim 7:1131–1143

    Article  Google Scholar 

  • Kousky VE, Kayano MT, Cavalcanti IFA (1984) A review of the Southern Oscillation: oceanic–atmospheric circulation changes and related rainfall anomalies. Tellus Ser A 36 A:490–504

    Article  Google Scholar 

  • Künzler M, Huggel C, Ramírez JM (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64:767–796

    Article  Google Scholar 

  • Lee T, McPhaden M (2010) Increasing intensity of El Nino in the central-equatorial Pacific. Geophys Res Lett 37:L14603. doi:10.1029/2010GL044007

    Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, Van Der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331:554

    Article  Google Scholar 

  • Li G, Li Ch, Tan Y, Pan J (2013) Impacts of the central and eastern Pacific types of ENSO on sea surface temperature in the South Pacific. Theor Appl Climatol 114:315–327

    Article  Google Scholar 

  • Lyon B (2003) Enhanced seasonal rainfall in Northern Venezuela and the extreme events of December 1999. Hydrol Process 18:2103–2116

    Google Scholar 

  • Marengo JA, Nobre CA, Tomasella J et al (2008) The drought of Amazonia in 2005. J Clim 21:495–516

    Article  Google Scholar 

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scales. In: Paper presented at 8th conference on applied climatology (Anaheim, CA: Am. Meteorol. Soc.)

  • McPhaden MJ, Zhang X (2009) Asymmetry in zonal phase propagation of ENSO sea surface temperature anomalies. Geophys Res Lett. doi:10.1029/2009GL038774

    Google Scholar 

  • McVicar TR et al (2012) Global review and synthesis of trends in observed terrestrial near surface wind speeds: implications for evaporation. J Hydrol 416(417):182–205

    Article  Google Scholar 

  • Meinen Ch, McPhaden J (2000) Observations of warm water volume changes in the equatorial Pacific and their relationship to El Niño and La Niña. J Clim 13:3551–3559

    Article  Google Scholar 

  • Mestas-Núñez A (2000) Orthogonally properties of rotated empirical modes. Int J Climatol 20:1509–1516

    Article  Google Scholar 

  • Mestre O, Domonkos P, Picard F, Auer I, Robin S, Lebarbier E, Böhm R, Aguilar E, Guijarro J, Vertacnik G, Klancar M, Dubuisson B, Stepanek P (2013) HOMER: HOMogenisation softwarE in R- methods and applications. Idöjárás 117:47–67

    Google Scholar 

  • Mo KC, Berbery EH (2011) Drought and persistent wet spells over South America based on observations and the U.S. CLIVAR drought experiments. J Clim 16:2302–2306

    Google Scholar 

  • Moran-Tejeda E et al (2015) Climate trends and variability in Ecuador (1966–2011). Int J Climatol. doi:10.1002/joc.4597/abstract

  • Mosquera-Machado S, Ahmad S (2007) Flood hazard assessment of Atrato River in Colombia. Water Resour Manag 21:591–609

    Article  Google Scholar 

  • Olivares I, Svenning J-C, van Bodegom PM, Balslev H (2015) Effects of warming and drought on the vegetation and plant diversity in the Amazon Basin. Bot Rev 81:42–69

    Article  Google Scholar 

  • Paredes FJ, Guevara E (2013) A probabilistic model for the prediction of meteorological droughts in Venezuela. Atmosfera 26:311–323

    Article  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil, and grass. Proc R Soc Lond A193:120–146

    Article  Google Scholar 

  • Phillips OL et al (2009) Drought sensitivity of the amazon rainforest. Science 323:1344–1347

    Article  Google Scholar 

  • Picard F, Lebarbier E, Hoebeke M, Rigail G, Thiam B, Robin S (2011) Joint segmentation calling and normalization of multiple CGH profiles. Biostatistics 12:413–428

    Article  Google Scholar 

  • Poveda G, Mesa OJ (1997) Feedbacks between hydrological processes in tropical South America and large-scale ocean-atmospheric phenomena. J Clim 10:2690–2702

    Article  Google Scholar 

  • Poveda G et al (2002) Influencia de fenómenos macro climáticos sobre el ciclo anual de la hidrología colombiana: cuantificación lineal, no lineal y percentiles probabilísticos. Meteorol Colomb 6:121–130

    Google Scholar 

  • Poveda G, Waylen PR, Pulwarty RS (2006) Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol 234:3–27

    Article  Google Scholar 

  • Poveda G, Álvarez D, Rueda Ó (2011) Hydro-climatic variability over the Andes of Colombia associated with ENSO: a review of climatic processes and their impact on one of the Earth’s most important biodiversity hotspots. Clim Dyn 36:2233–2249

    Article  Google Scholar 

  • Rayner NA et al (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res D Atmos 108:ACL 2-1–ACL 2-29

    Article  Google Scholar 

  • Richman MB (1986) Rotation of principal components. J Climatol 6:293–335

    Article  Google Scholar 

  • Rollenbeck R, Bendix J (2011) Rainfall distribution in the Andes of southern Ecuador derived from blending weather radar data and meteorological field observations. Atmos Res 99:277–289

    Article  Google Scholar 

  • Rollenbeck R, Bendix J, Fabian P (2011) Spatial and temporal dynamics of atmospheric water inputs in tropical mountain forests of South Ecuador. Hydrol Process 25:344–352

    Article  Google Scholar 

  • Román-Cuesta RM et al (2014) Synchronous fire activity in the tropical high Andes: an indication of regional climate forcing. Glob Change Biol 20:1929–1942

    Article  Google Scholar 

  • Rossel F, Cadier E (2009) El Niño and prediction of anomalous monthly rainfalls in Ecuador. Hydrol Process 23:3253–3260

    Article  Google Scholar 

  • Rossel F, Le Goulven P, Cadier E (1999) Repartition spatiale de l’influence de l’ENSO sur les precipitations annuelles en Equateur. Revue des Sciences de l’Eau 12:183–200

    Article  Google Scholar 

  • Schubert SD, Suarez MJ, Pegion PJ, Koster RD, Bacmeister JT (2004) Causes of long-term drought in the U.S. Great Plains. J Clim 17:485–503

    Article  Google Scholar 

  • Seager R, Kushnir Y, Herweijer C, Naik N, Velez J (2005) Modeling of tropical forcing of persistent droughts and pluvials over western North America: 1856–2000. J Clim 18:4065–4088

    Article  Google Scholar 

  • Siegel S, Castelan NJ (1988) Nonparametric statistics for the behavioral sciences. Mc-Graw-Hill, Inc., New York

    Google Scholar 

  • Stillwell HD (1992) Natural hazards and disasters in Latin America. Nat Hazards 6:131–159

    Article  Google Scholar 

  • Takahashi K, Montecinos A, Goubanova K, Dewitte B (2011) ENSO regimes: reinterpreting the canonical and Modoki El Niño. Geophys Res Lett 38:L10704. doi:10.1029/2011GL047364

    Article  Google Scholar 

  • Taschetto AS, Gupta AS, Jourdain NC et al (2014) Cold tongue and warm pool ENSO Events in CMIP5: mean state and future projections. J Clim 27:2861–2885

    Article  Google Scholar 

  • Tedeschi RG, Cavalcanti IFA, Grimm AM (2013) Influences of two types of ENSO on South American precipitation. Int J Climatol 33:1382–1400

    Article  Google Scholar 

  • Trenberth KE, Smith L (2006) The vertical structure of temperature in the tropics: different flavors of El Niño. J Clim 19:4956–4973

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP (2001) Indices of El Niño evolution. J Clim 14:1697–1701

    Article  Google Scholar 

  • Venema V, Mestre O, Aguilar E et al (2012) Benchmarking monthly homogenization algorithms. Clim Past 8:89–115

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2010a) A Multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index–SPEI. J Clim 23:1696–1718

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI, Angulo M, El Kenawy A (2010b) A new global 0.5° gridded dataset (1901–2006) of a multiscalar drought index: comparison with current drought index datasets based on the Palmer Drought Severity Index. J Hydrometeorol 11:1033–1043

    Article  Google Scholar 

  • Vicente-Serrano SM, López-Moreno JI, Gimeno L, Nieto R, Morán-Tejeda E, Lorenzo-Lacruz J, Beguería S, Azorin-Molina C (2011a) A multi-scalar global evaluation of the impact of ENSO on droughts. J Geophys Res Atmos 116:D20109. doi:10.1029/2011JD016039

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, López-Moreno JI (2011b) Comment on “Characteristics and trends in various forms of the Palmer Drought Severity Index (PDSI) during 1900–2008” by A. Dai. J Geophys Res Atmos 116:D19112. doi:10.1029/2011JD016410

    Article  Google Scholar 

  • Vicente-Serrano SM, Beguería S, Lorenzo-Lacruz J et al (2012) Performance of drought índices for ecological, agricultural and hydrological applications. Earth Interact 16:1–27

    Article  Google Scholar 

  • Vicente-Serrano SM, Gouveia C, Camarero JJ et al (2013) The response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci USA 110:52–57

    Article  Google Scholar 

  • Vicente-Serrano SM, Van der Schrier G, Beguería S, Azorin-Molina C, Lopez-Moreno JI (2015) Contribution of precipitation and reference evapotranspiration to drought indices under different climates. J Hydrol 426:42–54

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Vourlitis GL, de Souza Nogueira J, de Almeida Lobo F, Pinto OB Jr (2014) Variations in evapotranspiration and climate for an Amazonian semi-deciduous forest over seasonal, annual, and El Niño cycles. Int J Biometeorol 59:217–230

    Article  Google Scholar 

  • Vuille M (1999) Atmospheric circulation over the Bolivian Altiplano during dry and wet periods and extreme phases of the southern oscillation. Int J Climatol 19:1579–1600

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000a) Climate variability in the Andes of Ecuador and its relation to tropical Pacific and Atlantic Sea Surface temperature anomalies. J Clim 13:2520–2535

    Article  Google Scholar 

  • Vuille M, Bradley RS, Keimig F (2000b) Interannual climate variability in the Central Andes and its relation to tropical Pacific and Atlantic forcing. J Geophys Res Atmos 105(D10):12447–12460

    Article  Google Scholar 

  • Vuille M, Bradley RS, Werner M, Keimig F (2003) 20th century climate change in the tropical Andes: observations and model results. Clim Change 59:75–99

    Article  Google Scholar 

  • Vuille M, Francou B, Wagnon P et al (2008) Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev 89:79–96

    Article  Google Scholar 

  • Wang Ch (2002) Atmospheric circulation cells associated with the El Niño-Southern Oscillation. J Clim 15:399–419

    Article  Google Scholar 

  • Weng H, Behera SK, Yamagata T (2009) Anomalous winter climate conditions in the Pacific rim during recent El Niño Modoki and El Niño events. Clim Dyn 32:663–674

    Article  Google Scholar 

  • Wilhite DA (1993) Drought assessment, management and planning: theory and case studies. Kluwer, Boston

    Book  Google Scholar 

  • Xu H, Wang Y, Xie S-P (2004) Effects of the andes on eastern pacific climate: a regional atmospheric model study. J Clim 17:589–602

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, An S-I (2014) Recent progress on two types of El Niño: observations, dynamics, and future changes. Asia-Pac J Atmos Sci 50:69–81

    Article  Google Scholar 

  • Yoon J-H, Yeh S-W, Kim Y-H, Kug J-S, Min H-S (2012) Understanding the responses of sea surface temperature to the two different types of El Niño in the western North Pacific. Prog Oceanogr 105:81–89

    Article  Google Scholar 

  • Zhang T, Perlwitz J, Hoerling MP (2014) What is responsible for the strong observed asymmetry in teleconnections between El Niño and La Niña? Geophys Res Lett 41:1019–1025

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the EPhysLab (UVIGO-CSIC Associated Unit) and the research projects I-COOP H2O 2013CD0006: “Test multisectorial y actividades demostrativa sobre el potencial desarrollo de sistemas de monitorización de sequías en tiempo real en la región del oeste de Sudamérica” financed by the Spanish National Research Council, CGL2011-27574-CO2-02, CGL2014-52135-C03-01 and Red de variabilidad y cambio climático RECLIM (CGL2014-517221-REDT), financed by the Spanish Commission of Science and Technology and FEDER, and “LIFE12 ENV/ES/000536-Demonstration and validation of innovative methodology for regional climate change adaptation in the Mediterranean area (LIFE MEDACC)” financed by the LIFE programme of the European Commission. Cesar Azorin-Molina was supported by the JCI-2011-10263 Grant. Arturo Sanchez-Lorenzo was supported by the JCI-2012-12508 Grant. Miquel Tomas-Burguera was supported by a doctoral grant by the Ministry of Economy and Competitiveness and Natalia Martin-Hernandez was supported by a doctoral grant by the Aragón Regional Government. E. Aguilar was funded by the Grant CCI-009-ATN/OC-12439-RG-2012 from the Banco Iberoamericano de Desarrollo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Vicente-Serrano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vicente-Serrano, S.M., Aguilar, E., Martínez, R. et al. The complex influence of ENSO on droughts in Ecuador. Clim Dyn 48, 405–427 (2017). https://doi.org/10.1007/s00382-016-3082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3082-y

Keywords

Navigation