Skip to main content

Advertisement

Log in

Changes in the boreal summer intraseasonal oscillation projected by the CNRM-CM5 model under the RCP 8.5 scenario

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The 30–60-day boreal summer intraseasonal oscillation (BSISO) is the predominant intraseasonal variability in the Asian summer monsoon (ASM) region, representing the canonical northward and northwestward propagating convective components over South Asia (SA) and East Asia/western North Pacific (EA/WNP) sectors in conjunction with eastward propagating convective anomalies. The objective of this study is to assess possible changes of the 30–60-day BSISO in future global warming condition by comparing the twentieth century simulation with the twenty-first century projection produced by the CNRM-CM5 model under the representative concentration pathway 8.5 (RCP 8.5) scenario. In response to the increase of sea surface temperature in the tropical and subtropical Indian and Pacific Oceans, the saturation specific humidity in the planetary boundary layer (PBL) increases by about 16 %, providing more moisture and moist static energy for tropical convection. Thus, the BSISO will be intensified, with large-amplitude events prevailing in a broader range of the Indo-Pacific region. The convective signal will initiate over more westward parts of the Indian Ocean and decay over the more eastward tropical Pacific. As the strengthening of northward propagations over the SA and EA/WNP sectors is intimately related to equatorial enhanced convective anomalies, the enhanced convective anomalies are accompanied by stronger ascents on the top of the PBL, together with the wetter seasonal-mean PBL background, resulting in stronger northward propagations through moisture mechanisms. Moreover, due to the increased moisture-holding capacity of the low-level atmosphere, the phase speeds of SASM and EA/WNP northward propagation will decrease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ajayamohan RS, Goswami BN (2007) Dependence of simulation of boreal summer tropical intraseasonal oscillations on the simulation of seasonal mean. J Atmos Sci 64:460–478

    Article  Google Scholar 

  • Annamalai H, Slingo JM (2001) Active/break cycles: diagnosis of the intraseasonal variability of the Asian summer monsoon. Clim Dyn 18:85–102

    Article  Google Scholar 

  • Annamalai H, Sperber KR (2005) Regional heat sources and the active and break phases of boreal summer intraseasonal (30‒50 day) variability. J Atmos Sci 62:2726–2748

    Article  Google Scholar 

  • Arakawa A (2004) The cumulus parameterization problem: past, present, and future. J Clim 17:2493–2525

    Article  Google Scholar 

  • Bellon G, Sobel AH (2008) Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J Geophys Res 113:D07108

    Article  Google Scholar 

  • Bhat GS (2006) The Indian drought of 2002—a sub-seasonal phenomenon. Quart J Roy Meteorol Soc 132:2583–2602

    Article  Google Scholar 

  • Bretherton CS, Widmann M, Dymnikov VP, Wallace JM, Blade I (1990) The effective number of spatial degrees of freedom of a time-varying field. J Clim 12:1990–2009

    Article  Google Scholar 

  • Chen TC, Chen JM (1993) The 10–20-day mode of the 1979 Indian monsoon: its relation with the time variation of monsoon rainfall. Mon Weather Rev 121:2465–2482

    Article  Google Scholar 

  • Chou C, Hsueh YC (2010) Mechanisms of northward-propagating intraseasonal oscillation—a comparison between the Indian Ocean and the western north Pacific. J Clim 23:6624–6640

    Article  Google Scholar 

  • Decharme B, Douville H (2006) Introduction of a sub-grid hydrology in the ISBA land surface model. Clim Dyn 26:65–78

    Article  Google Scholar 

  • Decharme B, Douville H (2007) Global validation of the ISBA subgrid hydrology. Clim Dyn 29:21–37

    Article  Google Scholar 

  • Ding QH, Wang B (2009) Predicting extreme phases of the Indian summer monsoon. J Clim 22:346–363

    Article  Google Scholar 

  • Fu XH, Wang B (2004) Differences of boreal summer intraseasonal oscillations simulated in an atmosphere–ocean coupled model and an atmosphere-only model. J Clim 17:1263–1271

    Article  Google Scholar 

  • Fukutomi Y, Yasunari T (1999) 10–25 day intraseasonal variations of convection and circulation over East Asia and western north Pacific during early summer. J Meteorol Soc Jpn 77:753–769

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Quart J Roy Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Goswami BN, Ajayamohan RS, Xavier PK, Sengupta D (2003) Clustering of synoptic activity by Indian summer monsoon intraseasonal oscillations. Geophys Res Lett 30(8):1431. doi:10.1029/2002GL016734

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle on global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hsu HH, Weng CH (2001) Northwestward propagation of the intraseasonal oscillation during the boreal summer: mechanism and structure. J Clim 14:3834–3850

    Article  Google Scholar 

  • Hung MP, Lin JL, Wang W, Kim D, Shinoda T, Weaver ST (2013) MJO and convectively coupled equatorial waves simulated by CMIP5 climate models. J Clim 26:6185–6214

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York

  • Jiang XA, Li T, Wang B (2004) Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J Clim 17:1022–1039

    Article  Google Scholar 

  • Jiang XA, Waliser DE, Xavier PK, Petch J, Klingaman NP, Woolnough SJ, Guan B, Bellon G, Crueger T, DeMott C, Hannay C, Lin H, Hu WT, Kim D, Lappen CL, Lu MM, Ma HY, Miyakawa T, Ridout JA, Schubert SD, Scinocca J, Seo KH, Shindo E, Song X, Stan C, Tseng W-L, Wang WQ, Wu TW, Wu XQ, Wyser K, Zhang GJ, Zhu HY (2015) Vertical structure and physical processes of the Madden–Julian oscillation: exploring key model physics in climate simulations. J Geophys Res 120:4718–4748

    Google Scholar 

  • Jones C, Carvalho LMV (2011) Will global warming modify the activity of the Madden–Julian oscillation? Quart J R Meteorol Soc 137:544–552

    Article  Google Scholar 

  • Jones C, Carvalho LMV, Higgins RW, Waliser DE, Schemm JKE (2004) Climatology of tropical intraseasonal convective anomalies: 1979–2002. J Clim 17:523–539

    Article  Google Scholar 

  • Kemball-Cook SR, Wang B (2001) Equatorial waves and air–sea interaction in the boreal summer intraseasonal oscillation. J Clim 14:2923–2942

    Article  Google Scholar 

  • Ko KC, Hsu HH (2006) Sub-monthly circulation features associated with tropical cyclone tracks over the East Asian monsoon area during July–August season. J Meteorol Soc Jpn 84:871–889

    Article  Google Scholar 

  • Ko KC, Hsu HH (2009) ISO modulation on the submonthly wave pattern and recurving tropical cyclones in the tropical western north Pacific. J Clim 22:582–599

    Article  Google Scholar 

  • Kobayashi S, Ota Y, Harada Y, Ebita A, Moriya M, Onoda H, Onogi K, Kamahori H, Kobayashi C, Endo H, Miyaoka K, Takahashi K (2015) The JRA-55 reanalysis: general specifications and basic characteristics. J Meteorol Soc Jpn 93:5–48

    Article  Google Scholar 

  • Krishnamurti TN, Ardanuy P (1980) The 10 to 20-day westward propagating mode and breaks in the monsoons. Tellus 32:15–26

    Article  Google Scholar 

  • Lau KM, Yang GJ, Shen SH (1988) Seasonal and intraseasonal climatology of summer monsoon rainfall over East Asia. Mon Weather Rev 116:18–37

    Article  Google Scholar 

  • Lawrence DM, Webster PJ (2002) The boreal summer intraseasonal oscillation: relationship between northward and eastward movement of convection. J Atmos Sci 59:1593–1606

    Article  Google Scholar 

  • Lee JY, Wang B, Wheeler MC, Fu XH, Waliser DE, Kang IS (2013) Real-time multivariate indices for the boreal summer intraseasonal oscillation over the Asian summer monsoon region. Clim Dyn 40:493–509

    Article  Google Scholar 

  • Li J, Mao J, Wu G (2015) A case study of the impact of boreal summer intraseasonal oscillations on Yangtze rainfall. Clim Dyn 44:2683–2702

    Article  Google Scholar 

  • Liebmann B, Smith CA (1996) Description of a complete (interpolated) outgoing longwave radiation dataset. Bull Am Meteorol Soc 77:1275–1277

    Google Scholar 

  • Lin J, Weickmann K, Kiladis G, Mapes B, Sperber K, Lin W, Wheeler M, Schubert S, Genio AD, Donner LJ, Emori S, Gueremy JF, Hourdin F, Rasch PJ, Roeckner E, Scinocca JF (2006) Tropical intraseasonal variability in 14 IPCC AR4climate models. Part I: convective signals. J Clim 19:2665–2690

    Article  Google Scholar 

  • Lin J, Weickman KM, Kiladis GN, Mapes BE, Schubert SD, Suarez MJ, Bacmeister JT, Lee MI (2008) Subseasonal variability associated with Asian summer monsoon simulated by 14 IPCC AR4 coupled GCMs. J Clim 21:4541–4567

    Article  Google Scholar 

  • Liu P (2013) Changes in a modeled MJO with idealized global warming. Clim Dyn 40:761–773

    Article  Google Scholar 

  • Madden RA, Julian PR (1971) Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci 28:702–708

    Article  Google Scholar 

  • Madden RA, Julian PR (1972) Description of global-scale circulation cells in the Tropics with a 40–50 day period. J Atmos Sci 29:1109–1123

    Article  Google Scholar 

  • Madec G (2008) NEMO ocean engine. Note du Pole de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27 ISSN No 1288-1619

  • Mao J, Chan JCL (2005) Intraseasonal variability of the South China Sea summer monsoon. J Clim 18:2388–2402

    Article  Google Scholar 

  • Mao J, Sun Z, Wu G (2010) 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Clim Dyn 34:747–761

    Article  Google Scholar 

  • Mlawer EJ, Taubman SJ, Brown PD, Iacono MJ, Clough SA (1997) Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J Geophys Res 102:16663–16682

    Article  Google Scholar 

  • Molteni F, Corti S, Ferranti L, Slingo JM (2003) Predictability experiments for the Asian summer monsoon: impact of SST anomalies on interannual and intraseasonal variability. J Clim 16:4001–4021

    Article  Google Scholar 

  • Neelin JD, Held IM (1987) Modeling tropical convergence based on the moist static energy budget. Mon Weather Rev 115:3–12

    Article  Google Scholar 

  • Noilhan J, Mahfouf JF (1996) The ISBA land surface parameterization scheme. Global Planet Change 13:145–159

    Article  Google Scholar 

  • Noilhan J, Planton S (1989) A simple parameterization of land surface processes for meteorological models. Mon Weather Rev 117:536–549

    Article  Google Scholar 

  • Sabeerali CT, Dandi AR, Dhakate A, Salunke K, Mahapatra S, Rao SA (2013) Simulation of boreal summer intraseasonal oscillations in the latest CMIP5 coupled GCMs. J Geophys Res 118:4401–4420

    Google Scholar 

  • Sabeerali CT, Rao SA, George G, Rao DN, Mahapatra S, Kulkarni A, Murtugudde R (2014) Modulation of monsoon intraseasonal oscillations in the recent warming period. J Geophys Res 119:5185–5203

    Google Scholar 

  • Seo KH, SchemmJ-KE Wang W, Kumar A (2007) The boreal summer intraseasonal oscillation simulated in the NCEP Climate Forecast System (CFS): the effect of sea surface temperature. Mon Weather Rev 135:1807–1827

    Article  Google Scholar 

  • Seo KH, Ok J, Son J-H (2013) Assessing future changes in the East Asian summer monsoon using CMIP5 coupled models. J Clim 26:7662–7675

    Article  Google Scholar 

  • Sperber KR, Annamalai H (2008) Coupled model simulations of boreal summer intraseasonal (30–50 day) variability, part 1: systematic errors and caution on use of metrics. Clim Dyn 31:345–372

    Article  Google Scholar 

  • Sperber KR, Annamalai H, Kang LS, Kitoh A, MoiseA Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Subramanian A, Jochum M, Miller AJ, Neale R, Seo H, Waliser D, Murtugudde R (2014) The MJO and global warming: a study in CCSM4. Clim Dyn 42:2019–2031

    Article  Google Scholar 

  • Teng H, Wang B (2003) Interannual variations of the boreal summer intraseasonal oscillation in the Asian-Pacific region. J Clim 16:3572–3584

    Article  Google Scholar 

  • Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138

    Article  Google Scholar 

  • Turner AG, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595

    Article  Google Scholar 

  • Valcke S (2006) OASIS3 user guide (prism_2-5). Technical report TR/CMGC/06/73, CERFACS, Toulouse, France

  • Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine MP, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2013) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121. doi:10.1007/s00382-011-1259-y

    Article  Google Scholar 

  • Waliser DE, Jin K, Kang LS, Stern WF, Schubert SD, Wu MLC, Lau KM, Lee MI, Krishnamurthy V, Kitoh A, Meehl GA, Galin VY, Satyan V, Mandke SK, Wu G, Liu Y, Park CK (2003) AGCM simulations of intraseasonal variability associated with the Asian summer monsoon. Clim Dyn 21:423–446

    Article  Google Scholar 

  • Wang B, Rui H (1990) Synoptic climatology of transient tropical intraseasonal convection anomalies: 1975–1985. Meteorol Atmos Phys 44:43–61

    Article  Google Scholar 

  • Wang B, Xie X (1997) A model for the boreal summer intraseasonal oscillation. J Atmos Sci 54:72–86

    Article  Google Scholar 

  • Webster PJ, Magana VO, Palmer TN, Shukla J, Tomas RA, Yanai M, Yasunari T (1998) Monsoons: processes, predictability, and the prospects for prediction. J Geophys Res 103(C7):14451–14510

    Article  Google Scholar 

  • Yang J, Bao Q, Wang XC (2013) Intensified eastward and northward propagation of tropical intraseasonal oscillation over the equatorial Indian Ocean in a global warming scenario. Adv Atmos Sci 30:167–174

    Article  Google Scholar 

  • Yasunari T (1980) A quasi-stationary appearance of 30 to 40 day period in the cloudiness fluctuations during summer monsoon over India. J Meteorol Soc Jpn 58:225–229

    Google Scholar 

  • Zhang CD (2005) Madden–Julian oscillation. Rev Geophys 43:RG2003. doi:10.1029/2004RG000158

    Google Scholar 

Download references

Acknowledgments

This research was jointly supported by the National Basic Research Program of China (2014CB953902, 2012CB955202, and 2012CB417203), the Priority Research Program of the Chinese Academy of Sciences (XDA11010402), and the Natural Science Foundation of China (91537103, 41375087, and 41175059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiangyu Mao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Mao, J. Changes in the boreal summer intraseasonal oscillation projected by the CNRM-CM5 model under the RCP 8.5 scenario. Clim Dyn 47, 3713–3736 (2016). https://doi.org/10.1007/s00382-016-3038-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-016-3038-2

Keywords

Navigation