Skip to main content
Log in

Multilevel vector autoregressive prediction of sea surface temperature in the North Tropical Atlantic Ocean and the Caribbean Sea

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

We use a multilevel vector autoregressive model (VAR-L), to forecast sea surface temperature anomalies (SSTAs) in the Atlantic hurricane Main Development Region (MDR). VAR-L is a linear regression model using global SSTA data from L prior months as predictors. In hindcasts for the recent 30 years, the multilevel VAR-L outperforms a state-of-the-art dynamic forecast model, as well as the commonly used linear inverse model (LIM). The multilevel VAR-L model shows skill in 6–12 month forecasts, with its greatest skill in the months of the active hurricane season. The optimized model for the best long-range skill score in the MDR, chosen by a cross-validation procedure, has 12 time levels and 12 empirical orthogonal function modes. We investigate the optimal initial conditions for MDR SSTA prediction using a generalized singular vector decomposition of the propagation matrix. We find that the added temporal degrees of freedom for the predictands in VAR12 as compared with a LIM model, which allow the model to capture both the local wind–evaporation–SST feedback in the Tropical Atlantic and the impact on the Atlantic of an improved medium-range ENSO forecast, elevate the long-range forecast skill in the MDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander M, Matrosova A, Penland C, Scott J, Chang P (2008) Forecasting Pacific SSTs: linear inverse model predictions of the PDO. J Clim 21:385–402

    Article  Google Scholar 

  • Barnston AG, Tippett MK, L’Heureux ML, Li S, DeWitt DG (2012) Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? Bull Am Meteor Soc 93(5):631–651

    Article  Google Scholar 

  • Barreiro M, Chang P, Ji L, Saravanan R, Giannini A (2005) Dynamical elements of predicting boreal spring tropical Atlantic sea-surface temperatures. Dyn Atmos Oceans 39:61–85

    Article  Google Scholar 

  • Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere model. J Clim 4:766–784

    Article  Google Scholar 

  • Chapman D, Cane MA, Henderson N, Lee DE, Chen C (2015) A vector autoregressive ENSO prediction model. J Clim. doi:10.1175/JCLI-D-15-0306.1

    Google Scholar 

  • Charney JG, Halem M, Jastrow R (1969) Use of incomplete historical data to infer the present state of the atmosphere. J Atmos Sci 26(5):1160–1163

    Article  Google Scholar 

  • Chekroun MD, Kondrashov D, Ghil M (2011) Predicting stochastic systems by noise sampling, and application to the El Niño–Southern Oscillation. PNAS 108:11766–11771

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang DJ (2004) Predictability of El Niño over the past 148 years. Nature 428:733–736

    Article  Google Scholar 

  • Chen M, Kumar A, Wang W (2015) A study of the predictability of sea surface temperature over the tropics. Clim Dyn 44:1767–1776

    Article  Google Scholar 

  • Chiang J, Vimont D (2004) Analogous Pacific and Atlantic Meridional modes of Tropical atmosphere–ocean variability. J Clim 17:4143–4158

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Dee D et al (2011) The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597

    Article  Google Scholar 

  • Enfield DB (1996) Relationships of inter-American rainfall to tropical Atlantic and Pacific variability. Geophys Res Lett 23:3305–3308

    Article  Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic sea surface temperature variability and its relation to El Niño–Southern Oscillation. J Geophys Res 102(C1):929–945

    Article  Google Scholar 

  • Frankignoul C, Kestenare E (2005) Observed Atlantic SST anomaly impact on the NAO: an update. J Clim 18:4089–4094

    Article  Google Scholar 

  • Gianninni A, Saravanan R, Chang P (2004) The preconditioning role of tropical Atlantic variability in the development of the ENSO teleconnection: implications for the prediction of Nordeste rainfall. Clim Dyn 22:839–855

    Article  Google Scholar 

  • Hasselmann K (1988) PIPs and POPs—a general formalism for the reduction of dynamical systems in terms of principal interaction patterns and principal oscillation patterns. J Geophys Res 93:11015–11020

    Article  Google Scholar 

  • Hastenrath S (1978) On modes of tropical circulation and climate anomalies. J Atmos 35:2222–2231

    Article  Google Scholar 

  • Hawkins E, Sutton R (2007) Variability of the Atlantic thermohaline circulation described by three-dimensional empirical orthogonal functions. Clim Dyn 29:745–762

    Article  Google Scholar 

  • Hu ZZ, Kumar A, Huang B, Wang W, Zhu J, Wen C (2013) Prediction skill of monthly SST in the North Atlantic Ocean in NCEP Climate Forecast System version 2. Clim Dyn 40:2745–2759. doi:10.1007/s00382-012-1431-z

    Article  Google Scholar 

  • Jin E, Kinter JL III (2009) Characteristics of tropical Pacific SST predictability in coupled GCM forecasts using the NCEP CFS. Clim Dyn 32:675–691

    Article  Google Scholar 

  • Kaplan A, Cane MA, Kushnir Y, Clement A, Blumenthal M, Rajagopalan B (1998) Analyses of global sea surface temperature 1856–1991. J Geophys Res 103:18567–18589

    Article  Google Scholar 

  • Keenlyside NS, Latif M, Jungclaus J, Kornblueh L, Roeckner E (2008) Advancing decadal-scale climate prediction in the North Atlantic sector. Nature 453:84–88. doi:10.1038/nature06921

    Article  Google Scholar 

  • Kirtman BP et al (2014) The North American multimodel ensemble Phase-1 seasonal-to-interannual prediction; Phase-2 toward developing intraseasonal prediction. Bull Am Meteorol Soc 95:585–601

    Article  Google Scholar 

  • Kondrashov D, Kravtsov S, Robertson AW, Ghil M (2005) A hierarchy of data-based ENSO models. J Clim 18:4425–4444

    Article  Google Scholar 

  • Kravtsov S, Kondrachov D, Ghil M (2009) Empirical model reduction and the modeling hierarchy in climate dynamics. In: Palmer T, Williams T (eds) Stochastic physics and climate modeling. Cambridge University Press, Cambridge, pp 35–72

    Google Scholar 

  • Kushnir Y, Robinson WA, Chang P, Robertson AW (2006) The physical basis for predicting Atlantic sector seasonal-to-interannual climate variability. J Clim 19:5949–5970

    Article  Google Scholar 

  • Newman M, Alexander MA, Scott JD (2011) An empirical model of tropical ocean dynamics. Clim Dyn 37:1823–1841

    Article  Google Scholar 

  • Penland C, Hartten LM (2014) Stochastic forcing of north tropical Atlantic sea surface temperatures by the North Atlantic Oscillation. Geophys Res Lett 41:2126–2132. doi:10.1002/2014GL059252

    Article  Google Scholar 

  • Penland C, Matrosova L (1998) Prediction of tropical Atlantic sea surface temperatures using linear inverse modeling. J Clim 11:483–496

    Article  Google Scholar 

  • Penland C, Sardeshmukh P (1995) Optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J Clim 13:2177–2194

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements NOAAs historical merged land-ocean temp analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Tziperman E, Ioannou PJ (2002) Transient growth and optimal excitation of thermohaline variability. J Phys Ocean 32:3427–3435

    Article  Google Scholar 

  • Vimont D, Wallace J, Battisti D (2003) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Vimont D, Alexander M, Newman M (2014) Optimal growth of Central and East Pacific ENSO events. Geophys Res Lett. doi:10.1002/2014GL059997

    Google Scholar 

  • Xie SP, Philander SG (1994) A coupled ocean–atmosphere model of relevance to the ITCZ in the eastern Pacific. Tellus 46A:340–350

    Article  Google Scholar 

  • Zanna L, Tziperman E (2005) Non-normal amplification of the thermohaline circulation. J Phys Ocean 35:1593–1605

    Article  Google Scholar 

  • Zanna L, Tziperman E (2012) Forecast skill and predictability of observed Atlantic sea surface temperature. J Clim 25:5046–5056

    Article  Google Scholar 

  • Zhao M, Held I, Vecchi GA (2010) Retrospective forecasts of the hurricane season using a global atmospheric model assuming persistence of SST anomalies. Mon Weather Rev 138:3858–3868

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express our deep appreciation to the anonymous reviewer for the constructive comments. This research was supported by the Office of Naval Research under the Grant No. N00014-12-1-0911.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Eun Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D.E., Chapman, D., Henderson, N. et al. Multilevel vector autoregressive prediction of sea surface temperature in the North Tropical Atlantic Ocean and the Caribbean Sea. Clim Dyn 47, 95–106 (2016). https://doi.org/10.1007/s00382-015-2825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2825-5

Keywords

Navigation