Skip to main content

Advertisement

Log in

Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions—southern Europe, northern Africa and southern Australia—and areas of South and Central America, implying an increase in the number of dry days up to 1 month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than \(90\,\%\) of the models project a delay of the rainfall centroid from a few days up to 2 weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. In information theory, \({{\mathcal {D}}}_{KL}(p||q)\) is a measure of the information lost when the probability distribution \(q\) is used to approximate \(p\).

  2. The MEM estimates do not necessarily give a better indication than the best performing model (e.g. Tebaldi and Knutti 2007). Therefore we present the MEM, together with single models output, just for giving an indication about the behavior of most of the models used in this study.

References

  • AghaKouchak A (2014) Entropy–copula in hydrology and climatology. J Hydrometeorol 15:2176–2189. doi:10.1175/JHM-D-13-0207.1

    Article  Google Scholar 

  • Alessandri A, Fogli PG, Vichi M, Zeng N (2012) Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective. Earth Syst Dy 3:199–212

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232

    Article  Google Scholar 

  • Baker NC, Huang HP (2014) A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. J Clim 27:3731–3749

    Article  Google Scholar 

  • Becker E, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1902–present. Earth Syst Sci Data 71:71–99

    Article  Google Scholar 

  • Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543

    Article  Google Scholar 

  • Biasutti M, Sobel A (2009) Delayed sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett 36(L23):707. doi:10.1029/2009GL041303

    Google Scholar 

  • Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–551. doi:10.1038/NGEO1799

    Article  Google Scholar 

  • Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287

    Article  Google Scholar 

  • Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449

    Article  Google Scholar 

  • Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5. J Clim 26:3803–3822

    Article  Google Scholar 

  • Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased \(\text{ CO }_2\) levels on monsoons. Clim Dyn 37:83–101

    Article  Google Scholar 

  • Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005

    Article  Google Scholar 

  • Cook BI, Seager R (2013) The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res 118:1690–1699

    Google Scholar 

  • Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496

    Google Scholar 

  • Cover TM, Thomas JA (1991) Elements of information theory. Wiley, London

    Book  Google Scholar 

  • Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones P, Xie P (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331

    Article  Google Scholar 

  • Dwyer J, Biasutti M, Sobel A (2012) Projected changes in the seasonal cycle of surface temperature. J Clim 25:6359–6374

    Article  Google Scholar 

  • Dwyer J, Biasutti M, Sobel A (2013) The effect of greenhouse-gas-induced changes in sst on the annual cycle of the zonal mean tropical precipitation. J Clim 27:4544–4565

    Article  Google Scholar 

  • Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16

    Article  Google Scholar 

  • Easterling DR (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  Google Scholar 

  • Feng X, Porporato A, Rodriguz-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change. doi:10.1038/nclimate1907

    Google Scholar 

  • Geil KL, Serra YL, Zeng X (2013) Assessment of CMIP5 model simulations of the North American monsoon system. J Clim 26:8787–8801

    Article  Google Scholar 

  • Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi:10.1016/j.gloplacha.2007.09.005

    Article  Google Scholar 

  • Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183

    Google Scholar 

  • Goswami B, Venugopal V, Sengupta D, Madhusoodanan M, Xavier P (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi:10.1126/science.1132027

    Article  Google Scholar 

  • Grantz K, Rajagopalan B, Clark M, Zagona E (2007) Seasonal shifts in the North American monsoon. J Clim 20:1923–1935

    Article  Google Scholar 

  • Guan K, Wood EF, Medvigy D, Kimball J, Pan M, Caylor KK, Sheffield J, Xu X, Jones MO (2014) Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. J Geophys Res Biogeosci 119:1652–1669. doi:10.1002/2013JG002572

    Article  Google Scholar 

  • Guilyardi E, Balaji V, Lawrence B, Callaghan S, Deluca C, Denvil S, Lautenschlager M, Morgan M, Murphy S, Taylor KE (2013) Documenting climate models and their simulations. Bull Am Meteorol Soc 94:623–627

    Article  Google Scholar 

  • Hao Z, AghaKouchak A, Phillips T (2013) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett 8(034):014. doi:10.1088/1748-9326/8/3/034014

    Google Scholar 

  • Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol 34:623–642. doi:10.1038/NGEO1744

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over south and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217

    Article  Google Scholar 

  • Hasson S, Lucarini V, Pascale S, Böhner J (2014) Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 5:67–87. doi:10.5194/esd-5-67-2014

    Article  Google Scholar 

  • Hasson S, Pascale S, Lucarini V, Böhner J (2015) Seasonal cycle of precipitation over major river basins in South and South-East Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos Res. arXiv:1502.01008 (Under review)

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Hendon HH, Lim E, Wheeler MC (2011) Seasonal prediction of Australian summer monsoon rainfall. In: Chang C-P et al (eds) The global monsoon system: research and forecast, 2nd edn, World scientific publishing company, Singapore

  • Huang P, Xie SP, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361

    Article  Google Scholar 

  • IPCC (2013) IPCC fifth assessment report: Working Group I report, “The physical science basis”. Cambridge University Press, Cambridge

  • Jammalamadaka SR, Sengupta A (2001) Topics in circular statistics. World Scientific, Singapore

    Google Scholar 

  • Kapnick SB, Delworth TL (2013) Controls of global snow under a changed climate. J Clim 26:5537–5562. doi:10.1175/JCLI-D-12-00528.1

    Article  Google Scholar 

  • Kelley C, Ting M, Seager R, Kushnir Y (2012) Mediterranen precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys Res Lett 39(L21):703. doi:10.1029/2012GL053416

    Google Scholar 

  • Kitoh A, Endo H, Kumar KK, Cavalcanti IFA (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:1–13

    Google Scholar 

  • Knutti R (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373

    Article  Google Scholar 

  • Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22:79–86. doi:10.1214/aoms/1177729694

    Article  Google Scholar 

  • Kumar P (2013) Hydrology: seasonal rain changes. Nat Clim Change 3:783–784. doi:10.1038/nclimate1996

    Article  Google Scholar 

  • Lau WKM, Wu HT, Kim KM (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169. doi:10.1002/grl.50420

    Article  Google Scholar 

  • Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119

    Article  Google Scholar 

  • Liebmann B, Mechoso CR (2011) The South American monsoon system. In: Chang C-P et al (eds) The global monsoon system: research and forecast, 2nd edn, World scientific publishing company, Singapore

  • Liepert BG, Lo F (2013) CMIP5 updates of “inter-model variability and biases of the global water cycle in CMIP3 coupled climete models”. Environ Res Lett. doi:10.1088/1748-9326/8/2/029401

  • Liepert BG, Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled climete models. Environ Res Lett 7(014):006. doi:10.1088/1748-9326/7/1/014006

    Google Scholar 

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: oceanatmosphere feedback analysis. J Clim 20:4497–4525

    Article  Google Scholar 

  • Liu Z, Mehran A, Phillips TJ, AghaKouchak A (2014) Seasonal and regional biases in CMIP5 precipitation simulations. Clim Res 60:30–50. doi:10.3354/cr01221

    Article  Google Scholar 

  • Lucarini V, Danihlik R, Kriegerova I, Speranza A (2008) Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J Geophys Res 113(D09):107. doi:10.1029/2007JD009167

    Google Scholar 

  • Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kinter J, Kirtman B, Kumar S, Langenbrunner B, Lombardo K, Long LN, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Pan Z, Seager R, Serra Y, Seth A, Sheffield J, Stroeve J, Thibeault J, Xie SP, Wang C, Wyman B, Zhao M (2014) North American climate in CMIP5 experiments: Part III: Assessment of 21st century projections. J Clim 27:2230–2270

    Article  Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) IPCC climate change 2007: the physical science basis. Solomon S et al (eds) Cambridge University Press, Cambridge, pp 747–846

  • Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882

    Article  Google Scholar 

  • Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res 119:1695–1707. doi:10.1002/2013JD021152

    Google Scholar 

  • Mehta AV, Yang S (2008) Precipitation climatology over Meditarranean basin from ten years of TRMM measurements. Adv Geosci 17:87–91

    Article  Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi:10.1007/s10584-011-0156-z

    Article  Google Scholar 

  • Moss R, Edmonds J, Hibbard K, Manning M, Rose S, van Vuuren D, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer RJ, Thomson A, Weyant J, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756

    Article  Google Scholar 

  • Nasrollahi N, AghaKouchak A, Cheng L, Damberg L, Phillips TJ, Miao C, Hsu K, Sorooshian S (2015) How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour Res. doi:10.1002/2014WR016318

    Google Scholar 

  • Nie J, Boos WR, Kuang Z (2010) Observational evaluation of a convective quasi-equilibrium view of monsoons. J Clim 23:4416–4428

    Article  Google Scholar 

  • Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781

    Article  Google Scholar 

  • Palazzi E, von Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118:85–100. doi:10.1029/2012JD018697

    Article  Google Scholar 

  • Pascale S, Lucarini V, Feng X, Porporato A, Hasson S (2014) Analysis of rainfall seasonality from observations and climate models. Clim Dyn. doi:10.1007/s00382-014-2278-2

    Google Scholar 

  • Polade SD, Cayan DWPDR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. doi:10.1038/srep04364

    Article  Google Scholar 

  • Ren L, Arkin P, Smith TM, Shen S (2013) Global precipitation trends in 1900–2005 from reconstructions and coupled model simulations. J Geophys Res 118:1679–1689

    Article  Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fidcher G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57

    Article  Google Scholar 

  • Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505

    Article  Google Scholar 

  • Rohr T, Manzoni S, Feng X, Menezes RSC, Porporato A (2013) Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J Geophys Res Biogeosci 118:1156–1167. doi:10.1002/jgrg.20091

    Article  Google Scholar 

  • Sabeerali CT, Suryachandra AR, Dhakate AR, Salunke K, Goswami BN (2014) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn. doi:10.1007/s00382-014-2269-3

    Google Scholar 

  • Scheff J, Frierson DMW (2012) Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zone. Geophys Res Lett 39(L18):704. doi:10.1029/2012GL052910

    Google Scholar 

  • Schneider U, Becker E, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40. doi:10.1007/s00704-013-0860-x

    Google Scholar 

  • Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668

    Article  Google Scholar 

  • Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Projections of declining surface-water availability for the Southwestern United States. Nat Clim Change 3:482–486

    Article  Google Scholar 

  • Seth A, Rauscher S, Rojas M, Giannini A, Camargo SJ (2011) Enhanced spring convective barrier for monsoons in a warmer climate? Clim Change 104:403–414

    Article  Google Scholar 

  • Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351

    Article  Google Scholar 

  • Sheffield J, Barrett AP, Colle B, Fernando DN, Fu R, Geil KL, Hu Q, Kinter J, Kumar S, Langenbrunner B, Lombardo K, Long LN, Maloney E, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Nigam S, Pan Z, Ren T, Ruiz-Barradas A, Serra YL, Seth A, Thibeault JM, Stroeve JC, Yang Z, Yin L (2013) North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J Clim 26:9209–9245

    Article  Google Scholar 

  • Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci. doi:10.1038/ngeo2253

    Google Scholar 

  • Shongwe ME, van Oldenborgh GJ, van den Hurk BJJM, de Boer B, Coelho CAS, van Aalst MK (2009) Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J Clim 22:3819–3837

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733

    Article  Google Scholar 

  • Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493

    Article  Google Scholar 

  • Sperber KR, Annamalai H (2014) The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim Dyn. doi:10.1007/s00382-014-2099-3

    Google Scholar 

  • Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744

    Article  Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498

    Article  Google Scholar 

  • Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2063–2075. doi:10.1098/rsta.2007.2076

    Article  Google Scholar 

  • Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys Res Lett 40:4887–4892

    Article  Google Scholar 

  • Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulations. J Clim 13:3969–3993

    Article  Google Scholar 

  • Turner A, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595

    Article  Google Scholar 

  • Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183

    Article  Google Scholar 

  • Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955

    Article  Google Scholar 

  • Wentz F, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235

    Article  Google Scholar 

  • Wilcox L, Highwood E, Dunstone N (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climates. Environ Res Lett 8(024):033. doi:10.1088/1748-9326/8/2/024033

    Google Scholar 

  • Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214

    Article  Google Scholar 

Download references

Acknowledgments

Two anonymous reviewers provided constructive comments that helped to improve this manuscript. The authors acknowledge the World Climate Research Programmes Working Group on Coupled Modeling, which is responsible for CMIP, and the NOAA, for providing from their Web site the GPCC precipitation data. S.P., V.L. and S.H. wish to acknowledge the financial support provided by the ERC-Starting Investigator Grant NAMASTE (Grant No. 257106) and by the CliSAP/Cluster of excellence in the Integrated Climate System Analysis and Prediction. During this research S.P. was partially supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research. A.P. gratefully acknowledges NSF Grants: NSF FESD 1338694, CBET 1033467, EAR 1331846, EAR 1316258 as well as the US DOE through the Office of Biological and Environmental Research, Terrestrial Carbon Processes program (DE-SC0006967), the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (2011-67003-30222). X.F. acknowledges funding from the NSF Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Pascale.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pascale, S., Lucarini, V., Feng, X. et al. Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario. Clim Dyn 46, 1331–1350 (2016). https://doi.org/10.1007/s00382-015-2648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2648-4

Keywords

Navigation