Climate Dynamics

, Volume 46, Issue 3–4, pp 1331–1350 | Cite as

Projected changes of rainfall seasonality and dry spells in a high greenhouse gas emissions scenario

  • Salvatore Pascale
  • Valerio Lucarini
  • Xue Feng
  • Amilcare Porporato
  • Shabeh ul Hasson


In this diagnostic study we analyze changes of rainfall seasonality and dry spells by the end of the twenty-first century under the most extreme IPCC5 emission scenario (RCP8.5) as projected by twenty-four coupled climate models contributing to Coupled Model Intercomparison Project 5 (CMIP5). We use estimates of the centroid of the monthly rainfall distribution as an index of the rainfall timing and a threshold-independent, information theory-based quantity such as relative entropy (RE) to quantify the concentration of annual rainfall and the number of dry months and to build a monsoon dimensionless seasonality index (DSI). The RE is projected to increase, with high inter-model agreement over Mediterranean-type regions—southern Europe, northern Africa and southern Australia—and areas of South and Central America, implying an increase in the number of dry days up to 1 month by the end of the twenty-first century. Positive RE changes are also projected over the monsoon regions of southern Africa and North America, South America. These trends are consistent with a shortening of the wet season associated with a more prolonged pre-monsoonal dry period. The extent of the global monsoon region, characterized by large DSI, is projected to remain substantially unaltered. Centroid analysis shows that most of CMIP5 projections suggest that the monsoonal annual rainfall distribution is expected to change from early to late in the course of the hydrological year by the end of the twenty-first century and particularly after year 2050. This trend is particularly evident over northern Africa, southern Africa and western Mexico, where more than \(90\,\%\) of the models project a delay of the rainfall centroid from a few days up to 2 weeks. Over the remaining monsoonal regions, there is little inter-model agreement in terms of centroid changes.


Rainfall seasonality indicators CMIP5 models Representative concentration pathways Drought index Monsoons 



Two anonymous reviewers provided constructive comments that helped to improve this manuscript. The authors acknowledge the World Climate Research Programmes Working Group on Coupled Modeling, which is responsible for CMIP, and the NOAA, for providing from their Web site the GPCC precipitation data. S.P., V.L. and S.H. wish to acknowledge the financial support provided by the ERC-Starting Investigator Grant NAMASTE (Grant No. 257106) and by the CliSAP/Cluster of excellence in the Integrated Climate System Analysis and Prediction. During this research S.P. was partially supported by the NOAA Climate and Global Change Postdoctoral Fellowship Program, administered by the University Corporation for Atmospheric Research. A.P. gratefully acknowledges NSF Grants: NSF FESD 1338694, CBET 1033467, EAR 1331846, EAR 1316258 as well as the US DOE through the Office of Biological and Environmental Research, Terrestrial Carbon Processes program (DE-SC0006967), the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (2011-67003-30222). X.F. acknowledges funding from the NSF Graduate Research Fellowship Program.


  1. AghaKouchak A (2014) Entropy–copula in hydrology and climatology. J Hydrometeorol 15:2176–2189. doi: 10.1175/JHM-D-13-0207.1 CrossRefGoogle Scholar
  2. Alessandri A, Fogli PG, Vichi M, Zeng N (2012) Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective. Earth Syst Dy 3:199–212CrossRefGoogle Scholar
  3. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrological cycle. Nature 419:224–232CrossRefGoogle Scholar
  4. Baker NC, Huang HP (2014) A comparative study of precipitation and evaporation between CMIP3 and CMIP5 climate model ensembles in semiarid regions. J Clim 27:3731–3749CrossRefGoogle Scholar
  5. Becker E, Finger P, Meyer-Christoffer A, Rudolf B, Schamm K, Schneider U, Ziese M (2013) A description of the global land-surface precipitation data products of the global precipitation climatology centre with sample applications including centennial (trend) analysis from 1902–present. Earth Syst Sci Data 71:71–99CrossRefGoogle Scholar
  6. Bengtsson L, Hodges KI, Roeckner E (2006) Storm tracks and climate change. J Clim 19:3518–3543CrossRefGoogle Scholar
  7. Biasutti M, Sobel A (2009) Delayed sahel rainfall and global seasonal cycle in a warmer climate. Geophys Res Lett 36(L23):707. doi: 10.1029/2009GL041303 Google Scholar
  8. Bony S, Bellon G, Klocke D, Sherwood S, Fermepin S, Denvil S (2013) Robust direct effect of carbon dioxide on tropical circulation and regional precipitation. Nat Geosci 6:447–551. doi: 10.1038/NGEO1799 CrossRefGoogle Scholar
  9. Boos WR, Hurley JV (2013) Thermodynamic bias in the multimodel mean boreal summer monsoon. J Clim 26:2279–2287CrossRefGoogle Scholar
  10. Borchert R (1994) Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75:1437–1449CrossRefGoogle Scholar
  11. Chadwick R, Boutle I, Martin G (2013) Spatial patterns of precipitation change in CMIP5. J Clim 26:3803–3822CrossRefGoogle Scholar
  12. Cherchi A, Alessandri A, Masina S, Navarra A (2011) Effects of increased \(\text{ CO }_2\) levels on monsoons. Clim Dyn 37:83–101CrossRefGoogle Scholar
  13. Chou C, Neelin JD, Chen CA, Tu JY (2009) Evaluating the “rich-get-richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005CrossRefGoogle Scholar
  14. Cook BI, Seager R (2013) The response of the North American monsoon to increased greenhouse gas forcing. J Geophys Res 118:1690–1699Google Scholar
  15. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Change 2:491–496Google Scholar
  16. Cover TM, Thomas JA (1991) Elements of information theory. Wiley, LondonCrossRefGoogle Scholar
  17. Dai A, Lamb PJ, Trenberth KE, Hulme M, Jones P, Xie P (2004) The recent Sahel drought is real. Int J Climatol 24:1323–1331CrossRefGoogle Scholar
  18. Dwyer J, Biasutti M, Sobel A (2012) Projected changes in the seasonal cycle of surface temperature. J Clim 25:6359–6374CrossRefGoogle Scholar
  19. Dwyer J, Biasutti M, Sobel A (2013) The effect of greenhouse-gas-induced changes in sst on the annual cycle of the zonal mean tropical precipitation. J Clim 27:4544–4565CrossRefGoogle Scholar
  20. Eamus D (1999) Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics. Trends Ecol Evol 14:11–16CrossRefGoogle Scholar
  21. Easterling DR (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074CrossRefGoogle Scholar
  22. Feng X, Porporato A, Rodriguz-Iturbe I (2013) Changes in rainfall seasonality in the tropics. Nat Clim Change. doi: 10.1038/nclimate1907 Google Scholar
  23. Geil KL, Serra YL, Zeng X (2013) Assessment of CMIP5 model simulations of the North American monsoon system. J Clim 26:8787–8801CrossRefGoogle Scholar
  24. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Change 63:90–104. doi: 10.1016/j.gloplacha.2007.09.005 CrossRefGoogle Scholar
  25. Giorgi F, Jones C, Asrar GR (2009) Addressing climate information needs at the regional level: the CORDEX framework. WMO Bull 58:175–183Google Scholar
  26. Goswami B, Venugopal V, Sengupta D, Madhusoodanan M, Xavier P (2006) Increasing trend of extreme rain events over India in a warming environment. Science 314:1442–1445. doi: 10.1126/science.1132027 CrossRefGoogle Scholar
  27. Grantz K, Rajagopalan B, Clark M, Zagona E (2007) Seasonal shifts in the North American monsoon. J Clim 20:1923–1935CrossRefGoogle Scholar
  28. Guan K, Wood EF, Medvigy D, Kimball J, Pan M, Caylor KK, Sheffield J, Xu X, Jones MO (2014) Terrestrial hydrological controls on land surface phenology of African savannas and woodlands. J Geophys Res Biogeosci 119:1652–1669. doi: 10.1002/2013JG002572 CrossRefGoogle Scholar
  29. Guilyardi E, Balaji V, Lawrence B, Callaghan S, Deluca C, Denvil S, Lautenschlager M, Morgan M, Murphy S, Taylor KE (2013) Documenting climate models and their simulations. Bull Am Meteorol Soc 94:623–627CrossRefGoogle Scholar
  30. Hao Z, AghaKouchak A, Phillips T (2013) Changes in concurrent monthly precipitation and temperature extremes. Environ Res Lett 8(034):014. doi: 10.1088/1748-9326/8/3/034014 Google Scholar
  31. Harris I, Jones PD, Osborn TJ, Lister DH (2013) Updated high-resolution grids of monthly climatic observations. Int J Climatol 34:623–642. doi: 10.1038/NGEO1744 CrossRefGoogle Scholar
  32. Hasson S, Lucarini V, Pascale S (2013) Hydrological cycle over south and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 4:199–217CrossRefGoogle Scholar
  33. Hasson S, Lucarini V, Pascale S, Böhner J (2014) Seasonality of the hydrological cycle in major South and Southeast Asian river basins as simulated by PCMDI/CMIP3 experiments. Earth Syst Dyn 5:67–87. doi: 10.5194/esd-5-67-2014 CrossRefGoogle Scholar
  34. Hasson S, Pascale S, Lucarini V, Böhner J (2015) Seasonal cycle of precipitation over major river basins in South and South-East Asia: a review of the CMIP5 climate models data for present climate and future climate projections. Atmos Res. arXiv:1502.01008 (Under review)
  35. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  36. Hendon HH, Lim E, Wheeler MC (2011) Seasonal prediction of Australian summer monsoon rainfall. In: Chang C-P et al (eds) The global monsoon system: research and forecast, 2nd edn, World scientific publishing company, SingaporeGoogle Scholar
  37. Huang P, Xie SP, Hu K, Huang G, Huang R (2013) Patterns of the seasonal response of tropical rainfall to global warming. Nat Geosci 6:357–361CrossRefGoogle Scholar
  38. IPCC (2013) IPCC fifth assessment report: Working Group I report, “The physical science basis”. Cambridge University Press, CambridgeGoogle Scholar
  39. Jammalamadaka SR, Sengupta A (2001) Topics in circular statistics. World Scientific, SingaporeGoogle Scholar
  40. Kapnick SB, Delworth TL (2013) Controls of global snow under a changed climate. J Clim 26:5537–5562. doi: 10.1175/JCLI-D-12-00528.1 CrossRefGoogle Scholar
  41. Kelley C, Ting M, Seager R, Kushnir Y (2012) Mediterranen precipitation climatology, seasonal cycle, and trend as simulated by CMIP5. Geophys Res Lett 39(L21):703. doi: 10.1029/2012GL053416 Google Scholar
  42. Kitoh A, Endo H, Kumar KK, Cavalcanti IFA (2013) Monsoons in a changing world: a regional perspective in a global context. J Geophys Res 118:1–13Google Scholar
  43. Knutti R (2013) Robustness and uncertainties in the new CMIP5 climate model projections. Nat Clim Change 3:369–373CrossRefGoogle Scholar
  44. Kullback S, Leibler R (1951) On information and sufficiency. Ann Math Stat 22:79–86. doi: 10.1214/aoms/1177729694 CrossRefGoogle Scholar
  45. Kumar P (2013) Hydrology: seasonal rain changes. Nat Clim Change 3:783–784. doi: 10.1038/nclimate1996 CrossRefGoogle Scholar
  46. Lau WKM, Wu HT, Kim KM (2013) A canonical response of precipitation characteristics to global warming from CMIP5 models. Geophys Res Lett 40:3163–3169. doi: 10.1002/grl.50420 CrossRefGoogle Scholar
  47. Lee JY, Wang B (2014) Future change of global monsoon in the CMIP5. Clim Dyn 42:101–119CrossRefGoogle Scholar
  48. Liebmann B, Mechoso CR (2011) The South American monsoon system. In: Chang C-P et al (eds) The global monsoon system: research and forecast, 2nd edn, World scientific publishing company, SingaporeGoogle Scholar
  49. Liepert BG, Lo F (2013) CMIP5 updates of “inter-model variability and biases of the global water cycle in CMIP3 coupled climete models”. Environ Res Lett. doi: 10.1088/1748-9326/8/2/029401
  50. Liepert BG, Previdi M (2012) Inter-model variability and biases of the global water cycle in CMIP3 coupled climete models. Environ Res Lett 7(014):006. doi: 10.1088/1748-9326/7/1/014006 Google Scholar
  51. Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: oceanatmosphere feedback analysis. J Clim 20:4497–4525CrossRefGoogle Scholar
  52. Liu Z, Mehran A, Phillips TJ, AghaKouchak A (2014) Seasonal and regional biases in CMIP5 precipitation simulations. Clim Res 60:30–50. doi: 10.3354/cr01221 CrossRefGoogle Scholar
  53. Lucarini V, Danihlik R, Kriegerova I, Speranza A (2008) Hydrological cycle in the Danube basin in present-day and XXII century simulations by IPCCAR4 global climate models. J Geophys Res 113(D09):107. doi: 10.1029/2007JD009167 Google Scholar
  54. Maloney ED, Camargo SJ, Chang E, Colle B, Fu R, Geil KL, Hu Q, Jiang X, Johnson N, Karnauskas KB, Kinter J, Kirtman B, Kumar S, Langenbrunner B, Lombardo K, Long LN, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Pan Z, Seager R, Serra Y, Seth A, Sheffield J, Stroeve J, Thibeault J, Xie SP, Wang C, Wyman B, Zhao M (2014) North American climate in CMIP5 experiments: Part III: Assessment of 21st century projections. J Clim 27:2230–2270CrossRefGoogle Scholar
  55. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao ZC (2007) IPCC climate change 2007: the physical science basis. Solomon S et al (eds) Cambridge University Press, Cambridge, pp 747–846Google Scholar
  56. Meehl GA, Arblaster JM, Collins WD (2008) Effects of black carbon aerosols on the Indian monsoon. J Clim 21:2869–2882CrossRefGoogle Scholar
  57. Mehran A, AghaKouchak A, Phillips TJ (2014) Evaluation of CMIP5 continental precipitation simulations relative to satellite-based gauge-adjusted observations. J Geophys Res 119:1695–1707. doi: 10.1002/2013JD021152 Google Scholar
  58. Mehta AV, Yang S (2008) Precipitation climatology over Meditarranean basin from ten years of TRMM measurements. Adv Geosci 17:87–91CrossRefGoogle Scholar
  59. Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109:213–241. doi: 10.1007/s10584-011-0156-z CrossRefGoogle Scholar
  60. Moss R, Edmonds J, Hibbard K, Manning M, Rose S, van Vuuren D, Carter T, Emori S, Kainuma M, Kram T, Meehl G, Mitchell J, Nakicenovic N, Riahi K, Smith S, Stouffer RJ, Thomson A, Weyant J, Wilbanks T (2010) The next generation of scenarios for climate change research and assessment. Nature 463:747–756CrossRefGoogle Scholar
  61. Nasrollahi N, AghaKouchak A, Cheng L, Damberg L, Phillips TJ, Miao C, Hsu K, Sorooshian S (2015) How well do CMIP5 climate simulations replicate historical trends and patterns of meteorological droughts? Water Resour Res. doi: 10.1002/2014WR016318 Google Scholar
  62. Nie J, Boos WR, Kuang Z (2010) Observational evaluation of a convective quasi-equilibrium view of monsoons. J Clim 23:4416–4428CrossRefGoogle Scholar
  63. Orlowsky B, Seneviratne SI (2013) Elusive drought: uncertainty in observed trends and short- and long-term CMIP5 projections. Hydrol Earth Syst Sci 17:1765–1781CrossRefGoogle Scholar
  64. Palazzi E, von Hardenberg J, Provenzale A (2013) Precipitation in the Hindu-Kush Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos 118:85–100. doi: 10.1029/2012JD018697 CrossRefGoogle Scholar
  65. Pascale S, Lucarini V, Feng X, Porporato A, Hasson S (2014) Analysis of rainfall seasonality from observations and climate models. Clim Dyn. doi: 10.1007/s00382-014-2278-2 Google Scholar
  66. Polade SD, Cayan DWPDR, Gershunov A, Dettinger MD (2014) The key role of dry days in changing regional climate and precipitation regimes. Sci Rep 4:4364. doi: 10.1038/srep04364 CrossRefGoogle Scholar
  67. Ren L, Arkin P, Smith TM, Shen S (2013) Global precipitation trends in 1900–2005 from reconstructions and coupled model simulations. J Geophys Res 118:1679–1689CrossRefGoogle Scholar
  68. Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fidcher G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33–57CrossRefGoogle Scholar
  69. Roehrig R, Bouniol D, Guichard F, Hourdin F, Redelsperger JL (2013) The present and future of the West African monsoon: a process-oriented assessment of CMIP5 simulations along the AMMA transect. J Clim 26:6471–6505CrossRefGoogle Scholar
  70. Rohr T, Manzoni S, Feng X, Menezes RSC, Porporato A (2013) Effect of rainfall seasonality on carbon storage in tropical dry ecosystems. J Geophys Res Biogeosci 118:1156–1167. doi: 10.1002/jgrg.20091 CrossRefGoogle Scholar
  71. Sabeerali CT, Suryachandra AR, Dhakate AR, Salunke K, Goswami BN (2014) Why ensemble mean projection of south Asian monsoon rainfall by CMIP5 models is not reliable? Clim Dyn. doi: 10.1007/s00382-014-2269-3 Google Scholar
  72. Scheff J, Frierson DMW (2012) Robust future precipitation declines in CMIP5 largely reflect the poleward expansion of model subtropical dry zone. Geophys Res Lett 39(L18):704. doi: 10.1029/2012GL052910 Google Scholar
  73. Schneider U, Becker E, Finger P, Meyer-Christoffer A, Ziese M, Rudolf B (2013) GPCC’s new land surface precipitation climatology based on quality-controlled in situ data and its role in quantifying the global water cycle. Theor Appl Climatol 115(1–2):15–40. doi: 10.1007/s00704-013-0860-x Google Scholar
  74. Seager R, Naik N, Vecchi G (2010) Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J Clim 23:4651–4668CrossRefGoogle Scholar
  75. Seager R, Ting M, Li C, Naik N, Cook B, Nakamura J, Liu H (2013) Projections of declining surface-water availability for the Southwestern United States. Nat Clim Change 3:482–486CrossRefGoogle Scholar
  76. Seth A, Rauscher S, Rojas M, Giannini A, Camargo SJ (2011) Enhanced spring convective barrier for monsoons in a warmer climate? Clim Change 104:403–414CrossRefGoogle Scholar
  77. Seth A, Rauscher SA, Biasutti M, Giannini A, Camargo SJ, Rojas M (2013) CMIP5 projected changes in the annual cycle of precipitation in monsoon regions. J Clim 26:7328–7351CrossRefGoogle Scholar
  78. Sheffield J, Barrett AP, Colle B, Fernando DN, Fu R, Geil KL, Hu Q, Kinter J, Kumar S, Langenbrunner B, Lombardo K, Long LN, Maloney E, Mariotti A, Meyerson JE, Mo KC, Neelin JD, Nigam S, Pan Z, Ren T, Ruiz-Barradas A, Serra YL, Seth A, Thibeault JM, Stroeve JC, Yang Z, Yin L (2013) North American climate in CMIP5 experiments. Part I: Evaluation of historical simulations of continental and regional climatology. J Clim 26:9209–9245CrossRefGoogle Scholar
  79. Shepherd TG (2014) Atmospheric circulation as a source of uncertainty in climate change projections. Nat Geosci. doi: 10.1038/ngeo2253 Google Scholar
  80. Shongwe ME, van Oldenborgh GJ, van den Hurk BJJM, de Boer B, Coelho CAS, van Aalst MK (2009) Projected changes in mean and extreme precipitation in Africa under global warming. Part I: Southern Africa. J Clim 22:3819–3837CrossRefGoogle Scholar
  81. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013a) Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J Geophys Res Atmos 118:1716–1733CrossRefGoogle Scholar
  82. Sillmann J, Kharin VV, Zhang X, Zwiers FW, Bronaugh D (2013b) Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J Geophys Res Atmos 118:2473–2493CrossRefGoogle Scholar
  83. Sperber KR, Annamalai H (2014) The use of fractional accumulated precipitation for the evaluation of the annual cycle of monsoons. Clim Dyn. doi: 10.1007/s00382-014-2099-3 Google Scholar
  84. Sperber KR, Annamalai H, Kang IS, Kitoh A, Moise A, Turner A, Wang B, Zhou T (2013) The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century. Clim Dyn 41:2711–2744CrossRefGoogle Scholar
  85. Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498CrossRefGoogle Scholar
  86. Tebaldi C, Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Trans R Soc A 365:2063–2075. doi: 10.1098/rsta.2007.2076 CrossRefGoogle Scholar
  87. Toreti A, Naveau P, Zampieri M, Schindler A, Scoccimarro E, Xoplaki E, Dijkstra HA, Gualdi S, Luterbacher J (2013) Projections of global changes in precipitation extremes from Coupled Model Intercomparison Project Phase 5 models. Geophys Res Lett 40:4887–4892CrossRefGoogle Scholar
  88. Trenberth KE, Stepaniak DP, Caron JM (2000) The global monsoon as seen through the divergent atmospheric circulations. J Clim 13:3969–3993CrossRefGoogle Scholar
  89. Turner A, Annamalai H (2012) Climate change and the South Asian summer monsoon. Nat Clim Change 2:587–595CrossRefGoogle Scholar
  90. Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31CrossRefGoogle Scholar
  91. Wang B, Ding Q (2008) Global monsoon: dominant mode of annual variation in the tropics. Dyn Atmos Oceans 44:165–183CrossRefGoogle Scholar
  92. Wang B, Kim HJ, Kikuchi K, Kitoh A (2011) Diagnostic metrics for evaluation of annual and diurnal cycles. Clim Dyn 37:941–955CrossRefGoogle Scholar
  93. Wentz F, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  94. Wilcox L, Highwood E, Dunstone N (2013) The influence of anthropogenic aerosol on multi-decadal variations of historical global climates. Environ Res Lett 8(024):033. doi: 10.1088/1748-9326/8/2/024033 Google Scholar
  95. Xie P, Janowiak JE, Arkin PA, Adler R, Gruber A, Ferraro R, Huffman GJ, Curtis S (2003) GPCP pentad precipitation analyses: an experimental dataset based on gauge observations and satellite estimates. J Clim 16:2197–2214CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Salvatore Pascale
    • 1
    • 5
  • Valerio Lucarini
    • 1
    • 2
    • 3
  • Xue Feng
    • 4
  • Amilcare Porporato
    • 4
  • Shabeh ul Hasson
    • 1
  1. 1.Klima CampusMeteorologisches InstitutHamburgGermany
  2. 2.Department of Mathematics and StatisticsUniversity of ReadingReadingUK
  3. 3.Walker Institute for Climate System ResearchUniversity of ReadingReadingUK
  4. 4.Department of Civil and Environmental EngineeringDuke UniversityDurhamUSA
  5. 5.California Institute of TechnologyPasadenaUSA

Personalised recommendations