Skip to main content

Advertisement

Log in

Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Long-term changes in surface wind speed (SWS) are influenced by both large-scale circulation and relative resistance. The effects of large-scale circulation are embodied by the pressure-gradient force (PGF), which is mostly a natural factor, whereas the resistance is due to the drag between the air and the surface as well as in the different boundary layers, which is mainly caused by the anthropogenic land use and cover change (LUCC). We performed experiments using a simple dynamical method in which a balance among the PGF, Coriolis force, and drag is reached to separate the effects of the PGF and LUCC on the SWS, and then, to quantitatively estimate the influence of the LUCC on the SWS over the East China Plain (ECP) during the period 1980–2011. The results show a distinct decrease in the SWS in the station observation data with a rate of −0.13 m s−1 (10 year)−1, but there is no statistically significant long-term trend in the reanalysis data. At the same time, the drag coefficient induced by the LUCC shows an increasing trend, which is consistent with the 30 % increase in the rate of urbanization during the study period. In addition, the PGF fluctuates with distinct seasonal and interannual changes, and it has an insignificant long-term increasing trend during the period 1980–2011. At the same time, the spatial distribution of the linear trend coefficient of the normalized PGF is inconsistent with that of the SWS, but the linear trend coefficient of the normalized drag coefficient shows a similar spatial distribution as the SWS. Therefore, the increase in the drag coefficient induced by the LUCC should account for the long-term decrease in the SWS. The difference between the model wind speed, in which the drag coefficient is constrained to its value in the year 1980, and the observed wind speed at each station (SWSD) can reflect the influence of the LUCC on the SWS. Furthermore, the long-term changes in East Asian monsoons may not completely account for the observed wind speed decrease near the surface in the ECP region, but it is an important factor in the SWS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Accadia C, Mariani S, Casaioli M, Lavagnini A, Speranza A (2003) Sensitivity of precipitation forecast skill scores to bilinear interpolation and a simple nearest-neighbor average on high-resolution verification grids. Weather Forcast 18:918–932. doi:10.1175/1520-0434(2003)018<0918:sopfss>2.0.co;2

    Article  Google Scholar 

  • Balsamo G, Albergel C, Beljaars A et al (2012) ERA-Interim/Land: a global land-surface reanalysis based on ERA-Interim meteorological forcing. ERA Report Series, vol 13, ECMWF, Reading, pp 1–25

  • Berrisford P, Kallberg P, Kobayashi S, Dee D, Uppala S, Simmons AJ, Poli P, Sato H (2011) Atmospheric conservation properties in ERA-Interim. Q J R Meteorol Soc 137:1381–1399. doi:10.1002/qj.864

    Article  Google Scholar 

  • Bouttier F, Courtier P (2002) Data assimilation concepts and methods March 1999. Meteorological training course lecture series. ECMWF, pp 6–7.  http://msi.ttu.ee/~elken/Assim_concepts.pdf

  • Chang CP, Zhang YS, Li T (2000) Interannual and interdecadal variations of the East Asian summer monsoon and tropical Pacific SSTs. Part I: roles of the subtropical ridge. J Clim 13:4310–4325. doi:10.1175/1520-0442(2000)013<4310:IAIVOT>2.0.CO;2

    Article  Google Scholar 

  • China Meteorological Administration (CMA) (2003) Ground surface meteorological observation. China Meteorological Press, Beijing, p 157

    Google Scholar 

  • Cressman GP (1959) An operational objective analysis system. Mon Weather Rev 87:367–374

    Article  Google Scholar 

  • Dee DP (2005) Bias and data assimilation. Q J R Meteorol Soc 131:3323–3343

    Article  Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/qj.828

    Article  Google Scholar 

  • Deng XJ, Tie XX, Wu D, Zhou XJ, Bi XY, Tan HB, Li F, Jiang CL (2008) Long-term trend of visibility and its characterizations in the Pearl River Delta (PRD) region, China. Atmos Environ 42:1424–1435. doi:10.1016/j.atmosenv.2007.11.025

    Article  Google Scholar 

  • Ding Y, Wang Z, Sun Y (2008) Inter-decadal variation of the summer precipitation in east China and its association with decreasing Asian summer monsoon. Part I: observed evidences. Int J Climatol 28:139–1161. doi:10.1002/joc.1615

    Article  Google Scholar 

  • Ding Y, Liu YJ, Liang SJ, Ma XQ, Zhang YX, Si D, Liang P, Song YF, Zhang J (2014) Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change. J Meteorol Res 28(5):693–713. doi:10.1007/s13351-014-4046-y

    Article  Google Scholar 

  • Enloe J (2003) ENSO impacts on peak wind gusts in the United States. J Clim 17:1728–1737

    Article  Google Scholar 

  • Frauenfeld OW, Zhang TJ, Serreze MC (2005) Climate change and variability using European Centre for Medium-Range Weather Forecasts reanalysis (ERA-40) temperatures on the Tibetan Plateau. J Geophys Res 110:D02101. doi:10.1029/2004JD005230

    Google Scholar 

  • Garmsshov AV, Polonskii AB (2011) Wind variability in the Northwestern part of the Black Sea form the offshore fixed platform observation data. Russ Meteorol Hydrol 12:811–818

    Article  Google Scholar 

  • Greene JS, Chatelain M, Morrissey M, Stadler S (2012) Estimated changes in wind speed and wind power density over the western High Plains, 1971–2000. Theor Appl Climatol 109:507–518. doi:10.1007/s00704-012-0596-z

    Article  Google Scholar 

  • Guo H, Xu M, Hu Q (2011) Change in near-surface wind speed in China: 1969–2005. Int J Climatol 31:349–358. doi:10.1002/joc.2091

    Article  Google Scholar 

  • He YP, Monahan AH, Jones CG, Dai AG, Biner S, Caya D, Winger K (2010) Probability distributions of land surface wind speeds over North America. J Geophys Res 115:D04103. doi:10.1029/2008JD010708

    Google Scholar 

  • Hu GB, Yu JJ, Zhang YC, Hu SS, Quyang RL, Liu WB (2011) Temporal variation of wind speed in China for 1961–2007. Theor Appl Climatol 104:313–324. doi:10.1007/s00704-010-0348-x

    Article  Google Scholar 

  • Hu CB, Wu J, Gao YC, Zhao DM, Han ZW (2013) Consecutive extrem visibility events in China during 1960–2009. Atmos Environ 68:1–7. doi:10.1016/j.atmosenv.2012.11.035

    Article  Google Scholar 

  • Jhun JG, Lee EJ (2004) A new East Asian winter monsoon index and associated characteristics of the winter monsoon. J Clim 17:711–726. doi:10.1175/1520-0442(2004)017<0711:aneawm>2.0.co;2

    Article  Google Scholar 

  • Jiang Y, Luo Y, Zhao ZC, Tao SW (2010) Changes in wind speed over China during 1956–2004. Theor Appl Climatol 99:421–430. doi:10.1007/s00704-009-0152-7

    Article  Google Scholar 

  • Kalnay E, Cai M (2003) Impact of urbanization and land-use change on the climate. Nature 423:528–531

    Article  Google Scholar 

  • Kalnay E, Cai M, Li H, Tobin K (2006) Estimation of the impact of land-surface forcings on temperature trends in eastern United States. J Geophys Res 111:D06106. doi:10.1029/2005JD006555

    Google Scholar 

  • Klink K (2002) Trends and interannual variability of wind speeds distributions in Minnesota. J Clim 15:3311–3317

    Article  Google Scholar 

  • Klink K (2007) Atmospheric circulation effects on the wind speed variability at turbine height. J Appl Meteor Climatol 46:445–456. doi:10.1175/JAM2466.1

    Article  Google Scholar 

  • Li QC (2004) The relationship between sliding friction and relative velocity. Appl Energy Technol 6:9 (in Chinese)

    Google Scholar 

  • Li JP, Zeng Q (2002) A unified monsoon index. Geophys Res Lett 29(8):1274. doi:10.1029/2001GL013874

    Article  Google Scholar 

  • Li Y, Wang Y, Chu HY, Tang JP (2008) The climate influence of anthropogenic land-use changes on near-surface wind energy potential in China. Chin Sci Bull 53(18):2859–2866. doi:10.1007/s11434-008-0360-z

    Google Scholar 

  • Li JP, Wu ZW, Jiang ZH, He JH (2010) Can global warming strengthen the East Asian Summer Monsoon. J Clim 23:6696–6705. doi:10.1175/2010JCLI3434.1

    Article  Google Scholar 

  • Li JP, Feng J, Li Y (2011a) A possible cause of decreasing summer rainfall in northeast Australia. Int J Climatol 32(7):995–1005. doi:10.1002/joc.2328

    Article  Google Scholar 

  • Li Z, Yan ZW, Tu K, Liu WD, Wang YC (2011b) Changes in wind speed and extremes in Beijing during 1960–2008 based on homogenized observations. Adv Atmos Sci 28(2):408–420

    Article  Google Scholar 

  • Lim YK, Cai M, Kalnay E, Zhou L (2005) Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophys Res Lett 32:L22712. doi:10.1029/2005GL024267

    Article  Google Scholar 

  • Liu XN (2000) The homogeity test on mean annual wind speed over China. J Appl Meteor Sci 11(1):28–34 (in Chinese)

    Google Scholar 

  • Mao YH, Liu SH, Li J (2006) Study of aerodynamic parameters for different underling surfaces. Acta Meteorol Sin 64(3):325–334

    Google Scholar 

  • Mastylo M (2013) Bilinear interpolation theorems and applications. J Funct Anal 265(2):185–207. doi:10.1016/j.jfa.2013.05.001

    Article  Google Scholar 

  • McVicar TR, Van Niel TG, Roderick ML, Li LT, Mo XG, Zimmermann NE, Schmatz DR (2010) Observational evidence from two mountainous regions that near-surface wind speeds are declining more rapidly at higher elevations than lower elevations: 1960–2006. Geophys Res Lett 37:L06402. doi:10.1029/2009GL04225

    Article  Google Scholar 

  • Mitra AK, Bohra AK, Rajan D (1997) Daily rainfall analysis for Indian summer monsoon region. Int J Climatol 17:1083–1092

    Article  Google Scholar 

  • Mitra AK, Das Gupta M, Singh SV, Krishnamurti T (2003) Daily rainfall for the Indian monsoon region from merged satellite and rain gauge values: large-scale analysis from real-time data. J Hydrometeorol 4:769–789. doi:10.1175/1525-7541(2003)004<0769:drftim>2.0.co;2

    Article  Google Scholar 

  • Najac J, Boé J, Terray L (2009) A multi-model ensemble approach for assessment of climate change impact on surface winds in France. Clim Dyn 32:615–634. doi:10.1007/s00382-008-0440-4

    Article  Google Scholar 

  • Narkhedkar SG, Sinha SK, Mitra AK (2008) Mesoscale objective analysis of daily rainfall with satellite and conventional data over Indian summer monsoon region. GEOFIZIKA 25(2):159–178

    Google Scholar 

  • Niyogi D, Pyle P, Lei M, Arya SP, Kishtawal CM, Shepherd M, Chen F, Wolfe B (2011) Urban modification of thunderstorms: an observational storm climatology and model case study for the Indianapolis Urban Region. J Appl Meteorol Climatol 50:1129–1144. doi:10.1175/2010JAMC1836.1

    Article  Google Scholar 

  • Pirazzoli PA, Tomasin A (2003) Recent near-surface wind changes in the central Mediterranean and Adriatic areas. Int J Climatol 23(8):963–973. doi:10.1002/joc.925

    Article  Google Scholar 

  • Poli P (2010) List of observations assimilated in ERA-40 and ERA-Interim. ERA Report Series 4. ECMWF Reading United Kingdom. http://www.ecmwf.int/publications/

  • Pryor SC, Ledolter J (2010) Addendum to “Wind speeds trends over the contiguous United States”. J Geophys Res 115:D10103. doi:10.1029/2009JD013281

    Article  Google Scholar 

  • Pryor SC, Schoof JT, Barthelmie RJ (2005) Climate change impacts on wind speeds and wind energy density in northern Europe: empirical downscaling of multiple AOGCMs. Clim Res 29:183–198. doi:10.3354/cr029183

    Article  Google Scholar 

  • Pryor SC, Barthelmie RJ, Riley ES (2007) Historical evolution of wind climates in the USA. J Phys 75:1742–6596. doi:10.1088/1742-6596/75/1/012065

    Google Scholar 

  • Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34:L17403. doi:10.1029/2007GL031166

    Article  Google Scholar 

  • Schwiesow RL, Lawrence RS (1982) Effect of a change of terrain height and roughness on a wind profile. Bound Layer Meteorol 22:109–122

    Article  Google Scholar 

  • Simmons AJ, Uppala S, Dee D, Kobayashi S (2007) ERA-Interim: new ECWMF reanalysis products from 1989 onwards. ECMWF Newslett 110:25–35

    Google Scholar 

  • Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humility, temperature and precipitation: inferences from reanalyses and monthly gridded observational datasets. J Geophys Res 115:1–21. doi:10.1029/2009JD012442

    Google Scholar 

  • Simmons AJ, Poli P, Dee DP, Berrisford P, Hersbach H, Kobayashi S, Peubey C (2014) Estimating low-frequency variability and trends in atmospheric temperature using ERA-Interim. Q J R Meteorol Soc 140:329–353. doi:10.1002/qj.2317

    Article  Google Scholar 

  • Sinha SK, Narkhedkar SG, Mitra AK (2006) Barnes objective analysis scheme of daily rainfall over Maharashtra (India) on a mesoscale grid. Atmosfera 19:59–76

    Google Scholar 

  • Smits A, Klein Tank AMG, Können GP (2005) Trends in storminess over the Netherlands, 1962–2002. Int J Climatol 25(10):1331–1344. doi:10.1002/joc.1195

    Article  Google Scholar 

  • Song F, Hu Q, Qian WH (2004) Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol 24(7):853–870. doi:10.1002/joc.1047

    Article  Google Scholar 

  • Sušelj K, Sood A, Heinemann D (2010) North sea near-surface wind climate and its relation to the large-scale circulation patterns. Theor Appl Climatol 99:403–419

    Article  Google Scholar 

  • Tuller SE (2004) Measured wind speed trends on the west coast of Canada. Int J Climatol 24(11):1359–1374. doi:10.1002/joc.1073

    Article  Google Scholar 

  • Van De Velde F, De Baets P (1998) The relation between friction force and relative speed during the slip-phase of a stick-slip cycle. Wear 219:220–226

    Article  Google Scholar 

  • Wang L (2014) An intensity index for the East Asian winter monsoon. J Clim 27:2361–2374. doi:10.1175/JCLI-D-13-00086.1

    Article  Google Scholar 

  • Wang L, Chen W (2014) The East Asian winter monsoon: re-amplification in the mid-2000s. Chin Sci Bull 59:430–436

    Article  Google Scholar 

  • Wen F, Gao ZY, Wu ZK (2005) Wind speed scaling and the drag coefficient. Acta Oceanol Sin 24(4):29–42

    Google Scholar 

  • World Meteorological Organization (WMO) (2004) Guidelines on quality control procedures for data from automatic weather stations. CBS/OPAG2IOS/ET AWS23/DOC 4-1

  • Wu J, Fu CB, Zhang LY, Tang JP (2012) Trends of visibility on sunny days in China in the resent 50 years. Atmos Environ 55:339–346. doi:10.1016/j.atmosenv.2012.03.037

    Article  Google Scholar 

  • Wu J, Yang QD, Yang X, Zhao DM (2013) Changes in the tropopause height induced by landing Typhoons in China during the last 50 year. Atmos Sci Lett 14(3):176–180. doi:10.1002/asl.436

    Article  Google Scholar 

  • Xu YZ, Zhao M (1996) The influence of non-linear effect of vertical advection on the wind field in the Planetary boundary layer. Sci Meteorol Sin 16(1):20–29 (in Chinese)

    Google Scholar 

  • Xu M, Chang CP, Fu CB, Qi Y, Robock A, Robinson D, Zhang HM (2006) Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J Geophys Res 111:D24111. doi:10.1029/2006JD007337

    Article  Google Scholar 

  • Xu YY, Liu SH, Hu F, Nan M, Yao W, Shi YN, Jia HY (2009) Influence of Beijing urbanization on the characteristics of atmospheric boundary layer. Chin J Atmos Sci 33(4):859–867 (in Chinese)

    Google Scholar 

  • Zhang Q, Zeng J, Yao T (2012) Interaction of aerodynamic roughness length and windflow conditions and its parameterization over vegetation surface. Chin Sci Bull 57(13):1559–1567. doi:10.1007/s11434-012-5000-y

    Article  Google Scholar 

  • Zhou SZ, Yu BX (1988) Shanghai urban influence on the wind velocity. J East China Norm Univ 3:67–76 (in Chinese)

    Google Scholar 

  • Zhou L, Dickinson RE, Tian YH, Fang JY, Li QX, Kaufmann RK, Tucker CJ, Myneni RB (2004) Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci 101(26):9540–9554. doi:10.1073/pnas.0400357101

    Article  Google Scholar 

  • Zhu J, Liao H, Li J (2012) Increases in aerosol concentrations over eastern China due to the decadal-scale weakening of the East Asian summer monsoon. Geophys Res Lett 39:L09809. doi:10.1029/2012GL051428

    Google Scholar 

Download references

Acknowledgments

Daily meteorological data is available at China Meteorological Data Sharing Service System, and the ERA Interim dataset come from the European Centre for Medium-range Weather Forecast (ECWMF). We thank all the data sources. This study is sponsored by the National Key Program for Developing Basic Sciences of China (2011CB952003), and the Chinese Natural Science Foundation (41275162). This work is also supported by the Chinese Jiangsu Collaborative Innovation Center for Climate Change.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Zha, J. & Zhao, D. Estimating the impact of the changes in land use and cover on the surface wind speed over the East China Plain during the period 1980–2011. Clim Dyn 46, 847–863 (2016). https://doi.org/10.1007/s00382-015-2616-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-015-2616-z

Keywords

Navigation