Skip to main content

Advertisement

Log in

Irregularity and decadal variation in ENSO: a simplified model based on Principal Oscillation Patterns

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A new method of estimating the decay time, mean period and forcing statistics of El Niño-Southern Oscillation (ENSO) has been found. It uses a two-dimensional stochastically forced damped linear oscillator model with the model parameters estimated from a Principal Oscillation Pattern (POP) analysis and associated observed power spectra. It makes use of extended observational time series of 150 years of sea surface temperature (SST) and sea level pressure (SLP) as well as climate model output. This approach is motivated by clear physical relationships that SST and SLP POP patterns have to the ENSO cycle, as well as to each other, indicating that they represent actual physical modes of the climate system. Moreover, the leading POP mode accounts for 20–50 % of the variance on interannual time scales. The POP real part is highly correlated with several Niño indices near zero lag while the imaginary part exhibits a 6–9 month lead time and thus is a precursor. The observed POP power spectra show markedly different behavior for the peak and precursor, the former having more power at ENSO frequencies and the latter dominating at low frequencies. The results realistically suggest a period of oscillation of 4–6 years and a decay time of 8 months, which corresponds to the practical ENSO prediction limit. A fundamental finding of this approach is that the difference between the observed peak and precursor spectra at low frequencies can be related to the forcing statistics using the simple model, as well as to the difference between patterns of decadal and interannual variability in the Pacific.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander MA, Blade I, Newman M, Lanzante JR, Lau NC, Scott JD (2002) The atmospheric bridge: the influence of ENSO teleconnections on airsea interaction over the global oceans. J Clim 15:2205–2231

    Article  Google Scholar 

  • Allan R, Ansell T (2006) A new globally complete monthly historical gridded mean sea level pressure dataset (HadSLP2): 1850–2004. J Clim 19:5816–5842

    Article  Google Scholar 

  • Anderson BT (2003) Tropical Pacific sea-surface temperatures and preceding sea level pressure anomalies in the subtropical north Pacific. J Geophys Res 108:4732. doi:10.1029/2003JD003805.

    Article  Google Scholar 

  • Anderson BT, Furtado JC, Cobb KM, Di Lorenzo E (2013) Extratropical forcing of El Niño-Southern Oscillation asymmetry. Geophys Res Lett 40:4916–4921

    Google Scholar 

  • Barnett T, Graham N, Cane M, Zebiak S, Dolan S, O’Brien J, Legler D (1988) On the prediction of the El Niño of 1986–1987. Science 241:192–196

    Article  Google Scholar 

  • Barnston AG, Ropelewski CF (1992) Prediction of ENSO episodes using canonical correlation analysis. J Clim 5:1316–1345

    Article  Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial Pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Burgers G, Jin F-F, van Oldenborgh GJ (2005) The simplest ENSO recharge oscillator. Geophys Res Lett 32:L13706. doi:10.1029/2005GL022951

  • Cane MA, Zebiak SE (1985) A theory for El Niño and the Southern Oscillation. Science 228:1085–1087

    Article  Google Scholar 

  • Chang P, Wang B, Li T, Ji L (1994) Interactions between the seasonal cycle and the Southern Oscillation—frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophys Res Lett 21:2817–2820

    Article  Google Scholar 

  • Chen D, Cane MA (2008) El Niño prediction and predictability. J Comput Phys 227(7):3625–3640

    Article  Google Scholar 

  • Chen D, Cane MA, Kaplan A, Zebiak SE, Huang D (2004) Predictability of El Niño over the past 148 years. Nature 428(6984):733–736

    Article  Google Scholar 

  • Compo G, Whitaker J, Sardeshmukh P, Matsui N, Allan R, Yin X, Gleason B, Vose R, Rutledge G, Bessemoulin P, Brnnimann S, Brunet M, Crouthamel R, Grant A, Groisman P, Jones P, Kruk M, Kruger A, Marshall G, Maugeri M, Mok H, Trigo R, Wang X, Woodruff S, Worley S (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. doi:10.1002/qj.776.

    Article  Google Scholar 

  • Delcroix T, McPhaden M (2002) Interannual sea surface salinity and temperature changes in the western Pacific warm pool during 1992–2000. J Geophys Res 107(C12):8002. doi:10.1029/2001JC000862

    Google Scholar 

  • Deser C, Wallace JM (1990) Large-scale atmospheric circulation features of warm and cold episodes in the tropical Pacific. J Clim 3:1254–1281

    Article  Google Scholar 

  • Deser C, Phillips A, Tomas R, Okumura Y, Alexander M, Capotondi A, Scott J, Kwon YO, Ohba M (2012) ENSO and Pacific decadal variability in the Community Climate System Model version 4. J Clim 25:2622–2651

    Article  Google Scholar 

  • Di Lorenzo E, Cobb KM, Furtado JC, Schneider N, Anderson B, Bracco A, Alexander MA, Vimont DJ (2010) Central Pacific El Nino and decadal climate change in the North Pacific Ocean. Nature Geosci 3(11):762–765

    Article  Google Scholar 

  • Dias J, Pauluis O (2009) Convectively coupled waves propagating along an equatorial ITCZ. J Atmos Sci 66:2237–2255

    Article  Google Scholar 

  • Fedorov AV, Harper SL, Philander SG, Winter B, Wittenberg A (2003) How predictable is El Niño? Bull Am Meteorol Soc 84(7):911–919

    Article  Google Scholar 

  • Folland CK, Renwick JA, Salinger MJ, Mullan AB (2002) Relative influences of the interdecadal Pacific oscillation and ENSO on the South Pacific convergence zone. Geophys Res Lett 29(13). doi:10.1029/2001GL014201

  • Gardiner CW (2004) Handbook of stochastic methods, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • Gehne M, Kleeman R (2012) Spectral analysis of tropical atmospheric dynamical variables using a linear shallow water modal decomposition. J Atmos Sci 69:2300–2316

    Article  Google Scholar 

  • Harrison D, Vecchi G (2001) El Niño and La Niña—equatorial thermocline depth and sea surface temperature anomaliesm 1986–1998. Geophys Res Lett 28:1051–1054

    Article  Google Scholar 

  • Izumo T, Vialard J, Lengaigne M, Behera S, Luo JJ, Cravatte S, Masson S, Yamagata T (2010) Influence of the state of the Indian Ocean Dipole on the following years El Niño. Nat Geosci 3:168–172

    Article  Google Scholar 

  • Jin FF (1997) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54(7):811–829

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011a) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 1. Measurement and sampling uncertainties. J Geophys Res 116(D14):D14103

    Article  Google Scholar 

  • Kennedy JJ, Rayner NA, Smith RO, Parker DE, Saunby M (2011b) Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J Geophys Res 116(D14):D14104

    Article  Google Scholar 

  • Kestin TS, Karoly DJ, Yano J, Rayner NA (1998) Time-frequency variability of ENSO and stochastic simulations. J Clim 11:2258–2272

    Article  Google Scholar 

  • Kleeman R (2008) Stochastic theories for the irregularity of ENSO. Philos Trans R Soc A 366:2509–2524

    Article  Google Scholar 

  • Kleeman R (2011) Spectral analysis of multi-dimensional stochastic geophysical models with an application to decadal ENSO variability. J Atmos Sci 68:13–25

    Article  Google Scholar 

  • Kleeman R, Moore AM (1999) A new method for determining the reliability of dynamical ENSO predictions. Mon Weather Rev 127:694–705

    Article  Google Scholar 

  • Kleeman R, McCreary J, Klinger B (1999) A mechanism for the decadal variation of ENSO. Geophys Res Lett 26:1743

    Article  Google Scholar 

  • Kug JS, Sooraj K, Li T, Jin FF (2010) Precursors of the El Niño-La Niña onset and their interrelationship. J Geophys Res 115(D5). doi:10.1029/2009JD012861

  • Latif M, Barnett T, Cane M, Fluegel M, Graham N, von Storch H, Xu JS, Zebiak S (1994) A review of ENSO prediction studies. Clim Dyn 9:167–179

    Article  Google Scholar 

  • Lau NC (1997) Interactions between global SST anomalies and the midlatitude atmospheric circulation. Bull Am Meteorol Soc 78:21–33

    Article  Google Scholar 

  • Lohmann K, Latif M (2005) Tropical Pacific decadal variability and the subtropical-tropical cells. J Clim 18(23):5163–5178

    Article  Google Scholar 

  • van Loon H, Shea DJ (1985) The Southern Oscillation. Part IV: the precursors south of 15°S to the extremes of the oscillation. Mon Weather Rev 113:2063–2074

    Article  Google Scholar 

  • van Loon H, Shea DJ (1987) The Southern Oscillation. Part VI: anomalies of sea level pressure on the southern hemisphere and of Pacific sea surface temperature during the development of a warm event. Mon Weather Rev 115:370–379

    Article  Google Scholar 

  • Lukas R, Lindstrom E (1991) The mixed layer of the western equatorial Pacific ocean. J Geophys Res 96:3343–3358

    Article  Google Scholar 

  • Mantua NJ, Hare SR, Zhang Y, Wallace JM, Francis RC et al (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. Bull Am Meteorol Soc 78(6):1069–1080

    Article  Google Scholar 

  • Mayer M, Trenberth KE, Haimberger L, Fasullo JT (2013) The response of tropical atmospheric energy budgets to ENSO. J Clim 26:4710–4724

    Article  Google Scholar 

  • Meyers S, O’Brien J, Thelin E (1999) Reconstruction of monthly SST in the tropical Pacific ocean during 1868–1993 using adaptive climate basis functions. Mon Weather Rev 127(7):1599–1612

    Article  Google Scholar 

  • Moore A, Kleeman R (1998) Skill assessment for ENSO using ensemble prediction. Q J R Meteorol Soc 124:557–584

    Article  Google Scholar 

  • Newman M, Compo G, Alexander M (2003) ENSO-forced variability of the Pacific Decadal Oscillation. J Clim 16:3853–3857

    Article  Google Scholar 

  • Penland C, Magorian T (1993) Prediction of Niño 3 sea surface temperatures using linear inverse modeling. J Clim 6:1067–1076

    Article  Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Percival DB, Walden AT (1998) Spectral analysis for physical applications: multitaper and conventional univariate techniques, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Power S, Casey T, Folland C, Colman A, Mehta V (1999) Inter-decadal modulation of the impact of ENSO on Australia. Clim Dyn 15:319–324

    Article  Google Scholar 

  • Rasmusson EM, Carpenter TH (1982) Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon Weather Rev 110:354–384

    Article  Google Scholar 

  • Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowell DP, Kent EC, Kaplan A (2003) Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108(D14):4407. doi:10.1029/2002JD002670

    Article  Google Scholar 

  • Smith TM, Reynolds RW (2004) Reconstruction of monthly mean oceanic sea level pressure based on COADS and station data (1854–1997). J Oceanic Atmos Tech 21:1272–1282

    Article  Google Scholar 

  • Smith TM, Reynolds RW, Peterson TC, Lawrimore J (2008) Improvements to NOAAs historical merged land-ocean surface temperature analysis (1880–2006). J Clim 21:2283–2296

    Article  Google Scholar 

  • Stephens DJ, Meuleners MJ, van Loon H, Lamond MH, Telcik NP (2007) Differences in atmospheric circulation between the development of weak and strong warm events in the Southern Oscillation. J Clim 20:2191–2209

    Article  Google Scholar 

  • Stevens B, Giorgetta MA, Esch M, Mauritsen T, Crueger T, Rast S, Salzmann M, Schmidt H, Bader J, Block K, Brokopf R, Fast I, Kinne S, Kornblueh L, Lohmann U, Pincus R, Reichler T, Roeckner E (2013) Atmospheric component of the MPI-M Earth System model: ECHAM6. J Adv Model Earth Syst 5(2):146–172. doi:10.1002/jame.20015

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research, 1st edn. Cambridge University Press, Cambridge

    Google Scholar 

  • von Storch H, Bruns T, Fischer-Bruns I, Hasselmann K (1988) Principal Oscillation Pattern analysis of the 30- to 60-day oscillation in general circulation model equatorial troposphere. J Geophys Res 93:11,022–11,036

    Article  Google Scholar 

  • von Storch H, Buerger G, Schnur R, von Storch JS (1995) Principal Oscillation Patterns, a review. J Clim 8:377–400

    Article  Google Scholar 

  • Thompson CJ, Battisti DS (2001) A Linear Stochastic Dynamical Model of ENSO. Part II: analysis. J Clim 14(4):445–466

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70:1055–1096

    Article  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Torrence C, Webster PJ (1999) Interdecadal changes in the ENSO—monsoon system. J Clim 12:2679–2690

    Article  Google Scholar 

  • Trenberth K (1976) Spatial and temporal variations of the Southern Oscillation. Q J R Meteorol Soc 102:639–653

    Article  Google Scholar 

  • Trenberth K, Shea DJ (1987) On the evolution of the southern oscillation. Mon Weather Rev 115:3078–3096

    Article  Google Scholar 

  • Trenberth K, Branstator G, Karoly D, Kumar A, Lau NC, Ropelewski C (1998) Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J Geophys Res 103(D08205):14,291–14,324

    Article  Google Scholar 

  • Trenberth KE, Caron JM, Stepaniak DP, Worley S (2002) Evolution of El Niño Southern Oscillation and global atmospheric surface temperatures. J Geophys Res 107(D8). doi:10.1029/2000JD000298

  • Tziperman E, Stone L, Cane MA, Jarosh H (1994) El Niño chaos: overlapping of resonances between the seasonal cycle and the Pacific ocean-atmosphere oscillator. Science 264:72–74

    Article  Google Scholar 

  • Vimont DJ (2005) The contribution of the interannual ENSO cycle to the spatial pattern of decadal ENSO-like variability. J Clim 18:2080–2092

    Article  Google Scholar 

  • Vimont DJ, Battisti DS, Hirst AC (2003a) The seasonal footprinting mechanism in the CSIRO general circulation models. J Clim 16:2653–2667

    Article  Google Scholar 

  • Vimont DJ, Wallace JM, Battisti DS (2003b) The seasonal footprinting mechanism in the Pacific: implications for ENSO. J Clim 16:2668–2675

    Article  Google Scholar 

  • Wang B, Wang Y (1996) Temporal structure of the southern oscillation as revealed by waveform and wavelet analysis. J Clim 9:1586–1598

    Article  Google Scholar 

  • Wang H, Mehta VM (2008) Decadal variability of the Indo-Pacific warm pool and its association with atmospheric and oceanic variability in the NCEP-NCAR and SODA reanalyses. J Clim 21(21):5545–5565

    Article  Google Scholar 

  • Weisberg RH, Wang C (1997) Slow variability in the equatorial west-central Pacific in relation to ENSO. J Clim 10(8):1998–2017

    Article  Google Scholar 

  • Wheeler MC, Kiladis GN (1999) Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J Atmos Sci 56:374–399

    Article  Google Scholar 

  • Wu D, Anderson D, Davey M (1994) ENSO prediction experiments using a simple ocean-atmosphere model. Tellus A 46:465–480

    Article  Google Scholar 

  • Wyrtki K (1975) El Niño—the dynamic response of the equatorial Pacific ocean to atmospheric forcing. J Phys Oceanogr 5:572

    Article  Google Scholar 

  • Xu JS, von Storch H (1990) Predicting the state of the Southern Oscillation using Principal Oscillation Pattern analysis. J Clim 3:1316–1329

    Article  Google Scholar 

  • Yang GY, Hoskins B, Slingo J (2007) Convectively coupled equatorial waves. Part I: horizontal and vertical structures. J Atmos Sci 64:3406–3423

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Niño—Southern Oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

  • Zhang Y, Wallace JM, Battisti DS (1997) ENSO-like interdecadal variability: 1900–1993. J Clim 10:1004–1020

    Article  Google Scholar 

  • Živković T, Rypdal K (2013) ENSO dynamics: low-dimensional-chaotic or stochastic? J Geophys Res 118:2161–2168

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank two anonymous reviewers for their constructive comments, helping to improve this manuscript. We would like to acknowledge that the NOAA ERSSTv3, Extended Reconstructed SLP, HadSLP2 and 20CrSLP data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd. The HadSST3 and HadISST data was provided by the UK Met Office at http://www.metoffice.gov.uk/hadobs/. The Niño indices and SOI data were provided by the IRI/LDEO Climate Data Library and are available from their Web site at http://iridl.ldeo.columbia.edu. Gehne and Kleeman also acknowledge the support of the NSF grant ATM0806721. Gehne and Trenberth acknowledge the support of the NASA grant X11AG69G.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Gehne.

Additional information

The National Center for Atmospheric Research (NCAR) is sponsored by the National Science Foundation.

Appendices

Appendix

1 Additional data sets

In addition to the data sets presented in this study the analyses described above were applied to the following data sets as well. The extensively documented Hadley Centre global SLP data version 2 (HadSLP) is available at 5° resolution from January 1850 to December 2004 (Allan and Ansell 2006). NOAA reconstructed sea surface temperature data version 3b (ERSST) available on a 2° grid from January 1854 to February 2011 (Smith et al. 2008). For comparison the Hadley Centre global 5° SST anomaly data version 3 (HadSST) (Kennedy et al. 2011a, b), available from January 1850 to December 2007, and the NOAA extended reconstructed 2° SLP (ERSLP) data set (Smith and Reynolds 2004) available from January 1854 to December 1997 were also used.

Results obtained using these data sets are consistent with those from HadISST and 20CrSLP. The POP patterns for the first pair are almost identical with only small differences. The time series for the peak phase are highly correlated between the data sets and with Niño3. Correlations for the precursors are lower and show higher variability (Fig. 4). The POP power spectra for different data sets and variables have similar characteristics (Fig. 5) and the fitted parameter values agree well (Table 1).

2 Theoretical spectrum for 2 modes

The theoretical spectrum for a 2 mode model is computed to analyze how the inclusion of more than one mode in the theoretical model influences the power spectra for the first mode. Analogous to the damped harmonic oscillator with stochastic forcing described in Sect. 4 we can compute the spectrum for a 2 mode oscillation:

$$\begin{aligned} d\left[ \begin{array}{l} x_1\\ y_1\\ x_2\\ y_2 \end{array}\right] = {\mathbf {A}}\left[ \begin{array}{l} x_1\\ y_1\\ x_2\\ y_2 \end{array}\right] dt + {\mathbf {F}}dW, \end{aligned}$$
(9)

where

$$\begin{aligned} {\mathbf {A}}= \left[ \begin{array}{llll} \varepsilon _1&{}- \eta _1&{}0&{}0\\ \eta _2&{} \varepsilon _2&{}0&{}0\\ 0&{}0&{} \varepsilon _2&{}- \eta _2\\ 0&{}0&{} \eta _2&{} \varepsilon _2 \end{array}\right] \end{aligned}$$
(10)

with \(\mathbf {F}\) the (4D) forcing matrix and \(W\) the (vector) Wiener stochastic process.

The stochastic forcing in Eq. (9) has an associated covariance matrix \(\mathbf {R}\). This contains as parameters the variance of the forcing on the four phases as well as the correlation between them. It can be written as

$$\begin{aligned} {\mathbf {R}}= {\mathbf {F}}{\mathbf {F}}^T = c _1 \left[\begin{array}{llll} 1&r _{12}\sqrt{ \alpha _2}&r _{13}\sqrt{ \alpha _3}&r _{14}\sqrt{ \alpha _4}\\ r _{12}\sqrt{ \alpha _2}&\alpha _2&r _{23}\sqrt{ \alpha _2 \alpha _3}&r _{24}\sqrt{ \alpha _2 \alpha _4}\\ r _{13}\sqrt{ \alpha _3}&r _{23}\sqrt{ \alpha _2 \alpha _3}&\alpha _3&r _{34}\sqrt{ \alpha _3 \alpha _4}\\ r _{14}\sqrt{ \alpha _4}&r _{24}\sqrt{ \alpha _2 \alpha _4}&r _{34}\sqrt{ \alpha _3 \alpha _4}&\alpha _4 \end{array}\right] \end{aligned}$$

where \(\alpha _i = c _i/ c _1\) is the ratio of the variance of phase \(i\) and phase 1.

For a general phase vector \(v = \left[ A,B,C,D\right]\) the spectrum is:

$$\begin{aligned} S _v = v S (\omega )v^* = \frac{ c _1}{8\pi }\left[ S _v^{1}(\omega ) + S _v^2(\omega ) + S _v^{12}(\omega ) \right] \end{aligned}$$
(11)

with the first 2 terms equal to the spectra for each mode

$$\begin{aligned}&S _v^1(\omega ) = (1+ \alpha _2)(A^2+B^2) \left[ S ^1_{+}(\omega )+ S ^1_{-}(\omega )\right. \nonumber \\&\quad \left. +\, 2f_{12}\cos \left( \gamma _{\mathrm {AB}}+\arccos ( \varepsilon _1 S ^1_{-} (\omega ))-\arccos ( \varepsilon _1 S ^1_{+}(\omega ))\right) \sqrt{ S ^1_{+}(\omega ) S ^1_{-}(\omega )} \right] \end{aligned}$$
(12)

and similarly for the second mode spectrum \(S _v^2(\omega )\). The third term in Eq. (11) is the spectral contribution due to the correlation between the mode forcings. This can be written as

$$\begin{aligned} S _v^{12}(\omega )&= 2\sqrt{(A^2+B^2)(C^2+D^2)} \left[ f_{+} \left( X^{12}_{+} + X^{12}_{-}\right) \right. \nonumber \\&\quad \left. +\, f_{-} \left( Y^{12}_{+} +Y^{12}_{-} \right) \right] \end{aligned}$$
(13)

with

$$\begin{aligned} X^{12}_{+}&= \cos (\phi _{+}^{12})\sqrt{ S ^1_{-}(\omega ) S ^2_{-}(\omega )}\end{aligned}$$
(14)
$$\begin{aligned} X^{12}_{-}&= \cos (\phi _{-}^{12})\sqrt{ S ^1_{+}(\omega ) S ^2_{+}(\omega )}\end{aligned}$$
(15)
$$\begin{aligned} Y^{12}_{+}&= \cos (\psi _{+}^{12})\sqrt{ S ^1_{-}(\omega ) S ^2_{+}(\omega )} \end{aligned}$$
(16)
$$\begin{aligned} Y^{12}_{-}&= \cos (\psi _{-}^{12})\sqrt{ S ^1_{+}(\omega ) S ^2_{-}(\omega )}\end{aligned}$$
(17)
$$\begin{aligned} f_{\pm }&= \sqrt{\left( r _{13}\sqrt{ \alpha _3}\pm r _{24}\sqrt{ \alpha _2 \alpha _4}\right) ^2 +\left( r _{23}\sqrt{ \alpha _2 \alpha _3}\mp r _{14}\sqrt{ \alpha _4}\right) ^2} \end{aligned}$$
(18)

and

$$\begin{aligned} \phi _{+}^{12}&= \arctan \left( \frac{BC-AD}{AC+BD}\right) \nonumber \\&\quad + \arccos \left( \frac{ r _{13}\sqrt{ \alpha _3}+ r _{24}\sqrt{ \alpha _2 \alpha _4}}{f_{+}}\right) - \arccos ( \varepsilon _1 S ^1_{-}(\omega )) + \arccos ( \varepsilon _2 S ^2_{-}(\omega ))\nonumber \\ \phi _{-}^{12}&= -\arctan \left( \frac{BC-AD}{AC+BD}\right) \nonumber \\&\quad + \arccos \left( \frac{ r _{13}\sqrt{ \alpha _3}+ r _{24}\sqrt{ \alpha _2 \alpha _4}}{f_{+}}\right) - \arccos ( \varepsilon _1 S ^1_{+}(\omega )) + \arccos ( \varepsilon _2 S ^2_{+}(\omega ))\nonumber \\ \psi _{+}^{12}&= \arctan \left( \frac{BC+AD}{AC-BD}\right) \nonumber \\&\quad + \arccos \left( \frac{ r _{13}\sqrt{ \alpha _3}- r _{24}\sqrt{ \alpha _2 \alpha _4}}{f_{-}}\right) - \arccos ( \varepsilon _1 S ^1_{-}(\omega )) + \arccos ( \varepsilon _2 S ^2_{+}(\omega ))\nonumber \\ \psi _{-}^{12}&= -\arctan \left( \frac{BC+AD}{AC-BD}\right) \nonumber \\&\quad + \arccos \left( \frac{ r _{13}\sqrt{ \alpha _3}- r _{24}\sqrt{ \alpha _2 \alpha _4}}{f_{-}}\right) - \arccos ( \varepsilon _1 S ^1_{+}(\omega )) + \arccos ( \varepsilon _2 S ^2_{-}(\omega )). \end{aligned}$$

3 Forcing for stochastic model

To generate time series using the theoretical model and the estimated model parameters, it is necessary to get an expression for the stochastic forcing matrix. The covariance matrix \(\mathbf {R}\) of the stochastic forcing is directly given using the estimated parameters \(c , r\) and \(\alpha\). The forcing \(\mathbf {F}\) can be obtained from the covariance matrix by computing its eigendecomposition:

$$\begin{aligned} \mathbf {R}= \mathbf {L}\mathbf {D}\mathbf {L}^{-1} \end{aligned}$$

As \(\mathbf {R}\) is a real, positive definite, symmetric matrix \(\mathbf {L}\) is hermitian and satisfies \(\mathbf {L}^{-1}=\mathbf {L}^T\) and all the eigenvalues in \(\mathbf {D}\) are positive. With \(\mathbf {F}=\mathbf {L}\sqrt{\mathbf {D}}\) we define a forcing with the correct covariance matrix since:

$$\begin{aligned} \mathbf {F}dB_t \left( \mathbf {F}dB_t\right) ^T = \mathbf {F}dB_t \left( dB_t\right) ^T \mathbf {F}^T= \mathbf {F}\mathbf {F}^T = \mathbf {L}\mathbf {D}\mathbf {L}^{-1} = \mathbf {R}, \end{aligned}$$

where \(W = \left[ W^1,W^2\right] ^T\) and the \(W^i, i=\left[ 1,2\right]\) are uncorrelated Wiener processes.

4 Peak and precursor phase recovery

We denote the modeled Niño3 time series by \(z _r\) and the modeled precursor phase by \(z _i\). The phase angles for these time series are \(\phi\) and \(\psi = \phi +\frac{\pi }{2}\) respectively. These phases are related to the theoretical model time series \(x\) and \(y\) in Eq. 1 through linear combinations with coefficients \(\cos \phi\) and \(\sin \phi\) for the mature phase and similarly with phase angle \(\psi\) for the precursor. This means that we can write \(z _r\) and the modeled \(z ^{\mathrm {slp}}_i\) or precursor phase time series (denoted by \(z _i\)) as the following linear combination of \(x\) and \(y\):

$$\begin{aligned} \left[\begin{array}{l} z _r\\ z _i\end{array}\right] = \left[\begin{array}{l} \cos \left( \phi \right) y+\sin \left( \phi \right) x\\\cos \left( \psi \right) y+\sin \left( \psi \right) x \end{array}\right] = \left[\begin{array}{ll} \sin \left( \phi \right)&\cos \left( \phi \right) \\\sin \left( \psi \right)&\cos \left( \psi \right) \end{array} \right] \left[\begin{array}{l} x\\y \end{array}\right]. \end{aligned}$$

Defining

$$\begin{aligned} {\mathbf {Q}}= \left[\begin{array}{ll} \sin \left( \phi \right)&\cos \left( \phi \right) \\\sin \left( \psi \right)&\cos \left( \psi \right) \end{array}\right] \end{aligned}$$

this is the linear transformation from the \(\left( x,y\right)\) basis to the \(\left( z _r, z _i\right)\) basis.

The same linear transformation also transforms the forcing matrix \(\mathbf {F}\). The forcing covariance matrix in \(\left( z _r, z _i\right)\) coordinates is given by \({\tilde{\mathbf {R}}} = {\mathbf {Q}}{\mathbf {R}}{\mathbf {Q}}^T\) where the diagonal elements of \(\tilde{\mathbf {R}}\) now give the forcing variances onto \(z _r\) and \(z _i\) and the off-diagonals represent the correlation between the forcings onto \(z _r\) and \(z _i\). In the case of Niño3 and 20CrSLP results the phase angles are \(\phi =-0.18\) and \(\psi =1.39\) and the transformation is

$$\begin{aligned} {\mathbf {Q}}= \left[\begin{array}{ll} -0.18&0.98 \\ 0.98&0.18 \end{array}\right]. \end{aligned}$$

The covariance matrix in \(\left( z _r, z _i\right)\) coordinates is given by

$$\begin{aligned} {\tilde{\mathbf {R}}} = 1.5 \left[\begin{array}{ll} 1&-0.31 \\ -0.31&0.27 \end{array}\right], \end{aligned}$$

where now the \(\left( 1,1\right)\) entry gives the variance of the forcing onto the peak phase \(z _r\), and the \(\left( 2,2\right)\) entry gives the ratio of the forcing variance of the precursor \(z _i\) to the peak. For all considered data sets and both variables this ratio is always less than 1, indicating that the forcing variance on the precursor is smaller than on the peak phase.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gehne, M., Kleeman, R. & Trenberth, K.E. Irregularity and decadal variation in ENSO: a simplified model based on Principal Oscillation Patterns. Clim Dyn 43, 3327–3350 (2014). https://doi.org/10.1007/s00382-014-2108-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2108-6

Keywords

Navigation