Skip to main content

Advertisement

Log in

Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Many coupled general circulation models (CGCMs) suffer from serious model bias in the zonal gradient of sea surface temperature (SST) in the equatorial Atlantic. The bias of the equatorial Atlantic SST (EASST) may affect the interannual variability of the equatorial Atlantic, which in turn may influence the state of the tropical Pacific. In this paper we investigate the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a CGCM. To determine the impact of the interannual variability of the EASST on the tropical Pacific, we compare a run in a fully coupled mode (CTL run) and a run in which the EASST is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere (AT_m run). We find that, when the interannual variability of the EASST is excluded, the thermocline depth in the eastern equatorial Pacific is deepened, and the amplitude of the El Niño/Southern Oscillation is reduced by 30 % compared to the CTL run. The impact of the bias of the EASST on the tropical Pacific is investigated by comparing the AT_m run and a run in which the EASST is nudged toward the observed climatological monthly mean SST (AT_o run). It is found that, when the bias of the EASST is removed (i.e. AT_o run), the Gill–Matsuno type response to the warm SST anomalies in the western equatorial Atlantic induces low-level cyclonic anomalies in the eastern South Pacific, which leads to a deeper thermocline and colder SST in the South Pacific as compared to AT_m. The colder SST in the South Pacific reduces the precipitation along the South Pacific convergence zone. Our results of the model experiments demonstrate the importance of the EASST to the tropical Pacific climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bjerknes J (1969) Atmospheric teleconnections from the equatorial pacific. Mon Weather Rev 97:163–172

    Article  Google Scholar 

  • Cai W, Cowan T (2013) Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models? Geophys Res Lett 40:1–6. doi:10.1002/grl.50208

    Article  Google Scholar 

  • Ding H, Keenlyside NS, Latif M (2011) Impact of the equatorial Atlantic on the El Niño southern Oscillation. Clim Dyn 38(9–10):1965–1972. doi:10.1007/s00382-011-1097-y

    Google Scholar 

  • Doi T, Vecchi GA, Rosati AJ, Delworth TL (2012) Biases in the Atlantic ITCZ in seasonal-interannual variations for a coarse and a high resolution coupled climate model. J Clim 25:5494–5511

    Article  Google Scholar 

  • Dommenget D, Semenov V, Latif M (2006) Impacts of the tropical Indian and Atlantic Oceans on ENSO. Geophys Res Lett 33(11):L11701. doi:10.1029/2006GL025871

    Article  Google Scholar 

  • Frauen C, Dommenget D (2012) Influences of the tropical Indian and Atlantic Oceans on the predictability of ENSO. Geophys Res Lett 39(2):L02706. doi:10.1029/2011GL050520

    Google Scholar 

  • Gill AE (1980) Some simple solutions for heat-induced tropical circulation. Q J R Meteorol Soc 106:447–462

    Article  Google Scholar 

  • Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exchanges 17(1):29–32

    Google Scholar 

  • Ham YG, Kug JS, Park JY, Jin FF (2013) Sea surface temperature in the north tropical Atlantic as a trigger for El Niño/Southern Oscillation events. Nat Geosci 6(2):112–116. doi:10.1038/ngeo1686

    Article  Google Scholar 

  • Kalnay E et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteor Soc 77:437–470

    Article  Google Scholar 

  • Keenlyside NS, Ding H, Latif M (2013) Potential of equatorial Atlantic variability to enhance El Nino prediction. Geophys Res Lett 40:2278–2283. doi:10.1002/grl.50362

    Article  Google Scholar 

  • Klein SA, Soden BJ, Lau NC (1999) Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J Clim 12:917–932

    Article  Google Scholar 

  • Levitus S (1982) Climatological Atlas of the World Ocean. NOAA professional paper, 13, p 173

  • Lin JL (2007) The double-ITCZ problem in IPCC AR4 coupled GCMs: ocean-atmosphere feedback analysis. J Clim 20:4497–4525. doi:10.1175/JCLI4272.1

    Article  Google Scholar 

  • Losada T, Rodriguez-Fonseca B, Polo I, Janicot S, Gervois S, Chauvin F, Ruti P (2010) Tropical response to the Atlantic Equatorial mode: AGCM multimodel approach. Clim Dyn 35(1):45–52

    Article  Google Scholar 

  • Luo JJ, Masson S, Roeckner E, Madec G, Yamagata T (2005) Reducing climatology bias in an ocean-atmosphere CGCM with improved coupling physics. J Clim 18:2344–2360

    Article  Google Scholar 

  • Madec G (2006) NEMO ocean engine. Note du Pole de Modelisation Institut Pierre-Simon Laplace (IPSL)

  • Masson S, Terray P, Madec G, Luo JJ, Yamagata T, Takahashi K (2012) Impact of intra-daily SST variability on ENSO characteristics in a coupled model. Clim Dyn 39:681–707. doi:10.1007/s00382-011-1247-2

    Article  Google Scholar 

  • Matsuno T (1966) Quasi-geostrophic motions in the equatorial area. J Meteorol Soc Jpn 44:25–43

    Google Scholar 

  • Mechoso CR et al (1995) The seasonal cycle of the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Nagura M, Sasaki W, Tozuka T, Luo JJ, Behera SK, Yamagata T (2013) Longitudinal biases in the Seychelles Dome simulated by 35 ocean-atmosphere coupled general circulation models. J Geophys Res 118:1–16. doi:10.1029/2012JC008352

    Google Scholar 

  • Philander SGH, Yamagata T, Pacanowski RC (1984) Unstable air-sea interactions in the tropics. J Atmos Sci 41:603–613

    Article  Google Scholar 

  • Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625

    Article  Google Scholar 

  • Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598

    Article  Google Scholar 

  • Richter I, Xie SP, Wittenberg AT, Masumoto Y (2011) Tropical Atlantic biases and their relation to surface wind stress and terrestrial precipitation. Clim Dyn 38(5–6):985–1001. doi:10.1007/s00382-011-1038-9

    Google Scholar 

  • Richter I, Xie SP, Behera SK, Masumoto Y, Doi T (2012) Equatorial Atlantic variability and its relation to mean state biases in CMIP5. Clim Dyn. doi:10.1007/s00382-012-1624-5

    Google Scholar 

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36(20):L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Roeckner E et al. (2003) The atmospheric general circulation model ECHAM5. Part I: model description, Max-Planck-Institut für Meteorologie Rep 349, p 127

  • Saji NH, Goswami BN, Vinayachandran PN, Yamagata T (1999) A dipole mode in the tropical Indian Ocean. Nature 401:360–363

    Google Scholar 

  • Sasaki W, Richards KJ, Luo JJ (2012) Role of vertical mixing originating from small vertical scale structures above and within the equatorial thermocline in an OGCM. Ocean Model 57–58:29–42

    Article  Google Scholar 

  • Sasaki W, Richards KJ, Luo JJ (2013) Impact of vertical mixing induced by small vertical scale structures above and within the equatorial thermocline on the tropical Pacific in a CGCM. Clim Dyn. doi:10.1007/s00382-012-1593-8

    Google Scholar 

  • Tozuka T, Doi T, Miyasaka T, Keenlyside N, Yamagata T (2011) Key factors in simulating the equatorial Atlantic zonal sea surface temperature gradient in a coupled general circulation model. J Geophys Res 116(C6):1–12. doi:10.1029/2010JC006717

    Google Scholar 

  • Valcke S, Caubel A, Vogelsang R, Declat D (2004) OASIS3 ocean atmosphere sea ice soil user’s guide. Technical report TR/CMGC/04/68 CERFACS Toulouse

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20(17):4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wang C (2006) An overlooked feature of tropical climate: inter-Pacific-Atlantic variability. Geophys Res Lett 33(12):L12702. doi:10.1029/2006GL026324

    Article  Google Scholar 

Download references

Acknowledgments

All experiments were performed on the Earth Simulator 2. We thank two anonymous reviewers whose comments have led to a much improved manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wataru Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, W., Doi, T., Richards, K.J. et al. Impact of the equatorial Atlantic sea surface temperature on the tropical Pacific in a CGCM. Clim Dyn 43, 2539–2552 (2014). https://doi.org/10.1007/s00382-014-2072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-014-2072-1

Keywords

Navigation