Skip to main content

Advertisement

Log in

Naturally forced multidecadal variability of the Atlantic meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The mechanisms by which natural forcing factors alone could drive simulated multidecadal variability in the Atlantic meridional overturning circulation (AMOC) are assessed in an ensemble of climate model simulations. It is shown for a new state-of-the-art general circulation model, HadGEM2-ES, that the most important of these natural forcings, in terms of the multidecadal response of the AMOC, is solar rather than volcanic forcing. AMOC strengthening occurs through a densification of the North Atlantic, driven by anomalous surface freshwater fluxes due to increased evaporation. These are related to persistent North Atlantic atmospheric circulation anomalies, driven by forced changes in the stratosphere, associated with anomalously weak solar irradiance during the late nineteenth and early twentieth centuries. Within a period of approximately 100 years the 11-year smoothed ensemble mean AMOC strengthens by 1.5 Sv and subsequently weakens by 1.9 Sv, representing respectively approximately 3 and 4 standard deviations of the 11-year smoothed control simulation. The solar-induced variability of the AMOC has various relevant climate impacts, such as a northward shift of the intertropical convergence zone, anomalous Amazonian rainfall, and a sustained increase in European temperatures. While this model has only a partial representation of the atmospheric response to solar variability, these results demonstrate the potential for solar variability to have a multidecadal impact on North Atlantic climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bellouin N, Boucher O, Haywood J, Johnson C, Jones A, Rae J, Woodward S (2011) Improved representation of aerosols for HadGEM2. Hadley Centre Technical Note 73. Met Office Hadley Centre, Exeter, UK, 43 pp

  • Booth B, Dunstone N, Halloran P, Bellouin N, Andrews T (2012) Aerosols indicated as prime driver of 20th century North Atlantic climate variability. Nature 484(7393):228–232

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an earth-system model hadgem2. Geosci Model Dev 4(4):1051–1075. doi:10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Cunningham SA, Kanzow T, Rayner D, Baringer MO, Johns WE, Marotzke J, Longworth HR, Grant EM, Hirschi JJM, Beal LM, Meinen CS, Bryden HL (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. Science 317(5840):935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • D’Arrigo R, Wilson R, Jacoby G (2006) On the long-term context for late twentieth century warming. J Geophys Res-Atmos 111(D3) doi:10.1029/2005JD006352

  • Delworth T, Manabe S, Stouffer R (1993) Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model. J Clim 6(11):1993–2011. doi:10.1175/1520-0442(1993)006<1993:IVOTTC>2.0.CO;2

    Article  Google Scholar 

  • Dong B, Sutton R (2005) Mechanism of interdecadal thermohaline circulation variability in a coupled ocean-atmosphere GCM. J Clim 18(8):1117–1135

    Article  Google Scholar 

  • Dong B, Sutton R, Scaife A (2006) Multidecadal modulation of El Nino-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33(8) doi:10.1029/2006GL025766

  • Esper J, Cook E, Schweingruber F (2002) Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 295(5563):2250–2253. doi:10.1126/science.1066208

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G, Nganga J, Prinn R, Raga G, Schutz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Climate change 2007: the physical science basis contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change

  • Gonzalez-Rouco F, von Storch H, Zorita E (2003) Deep soil temperature as proxy for surface air-temperature in a coupled model simulation of the last thousand years. Geophys Res Lett 30(21) doi:10.1029/2003GL018264

  • Goosse H, Renssen H (2006) Regional response of the climate system to solar forcing: the role of the ocean. Space Sci Rev 125(1–4):227–235 doi:10.1007/s11214-006-9059-0, ISSI workshop on solar variability and planetary climates, Bern, Switzerland, 06–10 June 2005

  • Gordon C, Cooper C, Senior C, Banks H, Gregory J, Johns T, Mitchell J, Wood R (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16(2–3):147–168

    Article  Google Scholar 

  • Hawkins E, Smith RS, Allison LC, Gregory JM, Woollings TJ, Pohlmann H, de Cuevas B (2011) Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport. Geophys Res Lett 38. doi:10.1029/2011GL047208

  • Hegerl G, Crowley T, Hyde W, Frame D (2006) Climate sensitivity constrained by temperature reconstructions over the past seven centuries. Nature 440(7087):1029–1032. doi:10.1038/nature04679

    Article  Google Scholar 

  • Ineson S, Scaife AA, Knight JR, Manners JC, Dunstone NJ, Gray LJ, Haigh JD (2011) Solar forcing of winter climate variability in the Northern Hemisphere. Nat Geosci 4(11):753–757. doi:10.1038/NGEO1282

    Article  Google Scholar 

  • Iwi A, Hermanson L, Haines K, Sutton R (2012) Mechanisms linking volcanic aerosols to the Atlantic meridional overturning circulation. J Clim. doi:10.1175/2011JCLI4067.1

  • Jansen E, Overpeck J, Briffa K, Duplessy J, Joos F, Masson-Delmotte V, Olago D, Otto-Bliesner B, Peltier W, Rahmstorf S, Ramesh R, Raynaud D, Rind D, Solomina O, Villalba R, Zhang D (2007) Palaeoclimate. In: Climate change 2007: the physical science basis contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change

  • Jayne S, Marotzke J (2001) The dynamics of ocean heat transport variability. Rev Geophys 39(3):385–411. doi:10.1029/2000RG000084

    Article  Google Scholar 

  • Johns T, Durman C, Banks H, Roberts M, McLaren A, Ridley J, Senior C, Williams K, Jones A, Rickard G, Cusack S, Ingram W, Crucifix M, Sexton D, Joshi M, Dong B, Spencer H, Hill R, Gregory J, Keen A, Pardaens A, Lowe J, Bodas-Salcedo A, Stark S, Searl Y (2006) The new Hadley Centre climate model (HadGEM1): evaluation of coupled simulations. J Clim 19(7):1327–1353. doi:10.1175/JCLI3712.1

    Article  Google Scholar 

  • Jones CD, Hughes JK, Bellouin N, Hardiman SC, Jones GS, Knight J, Liddicoat S, O’Connor FM, Andres RJ, Bell C, Boo KO, Bozzo A, Butchart N, Cadule P, Corbin KD, Doutriaux-Boucher M, Friedlingstein P, Gornall J, Gray L, Halloran PR, Hurtt G, Ingram WJ, Lamarque JF, Law RM, Meinshausen M, Osprey S, Palin EJ, Chini LP, Raddatz T, Sanderson MG, Sellar AA, Schurer A, Valdes P, Wood N, Woodward S, Yoshioka M, Zerroukat M (2011) The HadGEM2-ES implementation of CMIP5 centennial simulations. Geoscientific Model Development 4(3):543–570. doi:10.5194/gmd-4-543-2011

    Article  Google Scholar 

  • Kanzow T, Cunningham SA, Johns WE, Hirschi JJM, Marotzke J, Baringer MO, Meinen CS, Chidichimo MP, Atkinson C, Beal LM, Bryden HL, Collins J (2010) Seasonal variability of the Atlantic meridional overturning circulation at 26.5 degrees N. J Clim 23(21):5678–5698. doi:10.1175/2010JCLI3389.1

    Article  Google Scholar 

  • Kara A, Rochford P, Hurlburt H (2000) An optimal definition for ocean mixed layer depth. J Geophys Res-Oceans 105(C7):16,803–816, 821. doi:10.1029/2000JC900072

    Article  Google Scholar 

  • Knight J, Allan R, Folland C, Vellinga M, Mann M (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32(20) doi:10.1029/2005GL024233

  • Kodera K, Kuroda Y (2002) Dynamical response to the solar cycle. J Geophys Res: Atmos 107(D24):ACL5–1–ACL5–12. doi:10.1029/2002JD002224

    Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45(1) doi:10.1029/2004RG000166

  • Levermann A, Griesel A, Hofmann M, Montoya M, Rahmstorf S (2005) Dynamic sea level changes following changes in the thermohaline circulation. Clim Dyn 24(4):347–354. doi:10.1007/s00382-004-0505-y

    Article  Google Scholar 

  • Lewis SL, Brando PM, Phillips OL, van der Heijden GMF, Nepstad D (2011) The 2010 Amazon drought. Science 331(6017):554. doi:10.1126/science.1200807

    Article  Google Scholar 

  • Lund DC, Lynch-Stieglitz J, Curry WB (2006) Gulf Stream density structure and transport during the past millennium. Nature 444(7119):601–604. doi:10.1038/nature05277

    Article  Google Scholar 

  • Manzini E, Cagnazzo C, Fogli PG, Bellucci A, Mller WA (2012) Stratosphere-troposphere coupling at inter-decadal time scales: implications for the north atlantic ocean. Geophys Res Lett 39(5). doi:10.1029/2011GL050771

  • Marengo JA, Nobre CA, Tomasella J, Oyama MD, De Oliveira GS, De Oliveira R, Camargo H, Alves LM, Brown IF (2008) The drought of Amazonia in 2005. J Clim 21(3):495–516. doi:10.1175/2007JCLI1600.1

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, Culverwell ID, Halloran PR, Hardiman SC, Hinton TJ, Jones CD, McDonald RE, McLaren AJ, O’Connor FM, Roberts MJ, Rodriguez JM, Woodward S, Best MJ, Brooks ME, Brown AR, Butchart N, Dearden C, Derbyshire SH, Dharssi I, Doutriaux-Boucher M, Edwards JM, Falloon PD, Gedney N, Gray LJ, Hewitt HT, Hobson M, Huddleston MR, Hughes J, Ineson S, Ingram WJ, James PM, Johns TC, Johnson CE, Jones A, Jones CP, Joshi MM, Keen AB, Liddicoat S, Lock AP, Maidens AV, Manners JC, Milton SF, Rae JGL, Ridley JK, Sellar A, Senior CA, Totterdell IJ, Verhoef A, Vidale PL, Wiltshire A, Team HD (2011) The HadGEM2 family of Met Office Unified Model climate configurations. Geosci Model Dev 4(3):723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • McManus J, Francois R, Gherardi J, Keigwin L, Brown-Leger S (2004) Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature 428(6985):834–837. doi:10.1038/nature02494

    Article  Google Scholar 

  • Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao Z (2007) Chapter 10: global climate projections. In: Climate change 2007: the physical science basis contribution of working Group I to the fourth assessment report of the intergovernmental panel on climate change

  • Menary MB, Roberts CD, Palmer MD, Halloran PR, Jackson L, Wood RA, Muller WA, Matei D, Lee SK (2013) Mechanisms of aerosol-forced amoc variability in a state of the art climate model. J Geophys Res: Oceans 118(4):2087–2096. doi:10.1002/jgrc.20178

    Article  Google Scholar 

  • Menary MB, Park W, Lohmann K, Vellinga M, Palmer MD, Latif M, Jungclaus JH (2012) A multimodel comparison of centennial Atlantic meridional overturning circulation variability. Clim Dyn 38(11–12):2377–2388. doi:10.1007/s00382-011-1172-4

    Article  Google Scholar 

  • Mignot J, Ganopolski A, Levermann A (2007) Atlantic subsurface temperatures: response to a shutdown of the overturning circulation and consequences for its recovery. J Clim 20(19):4884–4898. doi:10.1175/JCLI4280.1

    Article  Google Scholar 

  • Mignot J, Khodri M, Frankignoul C, Servonnat J (2011) Volcanic impact on the Atlantic Ocean over the last millennium. Clim Past 7(4):1439–1455. doi:10.5194/cp-7-1439-2011

    Article  Google Scholar 

  • Moberg A, Sonechkin D, Holmgren K, Datsenko N, Karlen W (2005) Highly variable Northern Hemisphere temperatures reconstructed from low- and high-resolution proxy data. Nature 433(7026):613–617. doi:10.1038/nature03265

    Article  Google Scholar 

  • Moreno A, Stoll H, Jimenez-Sanchez M, Cacho I, Valero-Garces B, Ito E, Edwards RL (2010) A speleothem record of glacial (25-11.6 kyr BP) rapid climatic changes from northern Iberian Peninsula. Global And Planetary Change 71(3–4, Sp. Iss. SI) pp 218–231 doi:10.1016/j.gloplacha.2009.10.002

    Google Scholar 

  • Morgenstern O, Braesicke P, O’Connor FM, Bushell AC, Johnson CE, Osprey SM, Pyle JA (2009) Evaluation of the new ukca climate-composition model part 1: the stratosphere. Geosci Model Dev 2(1):43–57. doi:10.5194/gmd-2-43-2009

    Article  Google Scholar 

  • Osborn TJ, Raper SCB, Briffa KR (2006) Simulated climate change during the last 1,000 years: comparing the ECHO-G general circulation model with the MAGICC simple climate model. Clim Dyn 27(2–3):185–197. doi:10.1007/s00382-006-0129-5

    Article  Google Scholar 

  • Park W, Latif M (2012) Atlantic meridional overturning circulation response to idealized external forcing. Clim Dyn 39:1709–1726. doi:10.1007/s00382-011-1212-0

    Article  Google Scholar 

  • Pohlmann H, Sienz F, Latif M (2006) Influence of the multidecadal Atlantic meridional overturning circulation variability on European climate. J Clim 19(23):6062–6067. doi:10.1175/JCLI3941.1

    Article  Google Scholar 

  • Rahmstorf S (2003) The current climate. Nature 421(6924):699. doi:10.1038/421699a

    Article  Google Scholar 

  • Reichler T, Junsu K, Manzini E, Kroger J (2012) A stratospheric connection to Atlantic climate variability. Nature Geosci 5(11):783–787. doi:10.1038/ngeo1586

    Article  Google Scholar 

  • Roberts CD, Palmer MD (2012) Detectability of changes to the atlantic meridional overturning circulation in the hadley centre climate models. Clim Dyn 39(9–10):2533–2546

    Article  Google Scholar 

  • Roberts CD, Garry FK, Jackson LC (2013) A multimodel study of sea surface temperature and subsurface density fingerprints of the atlantic meridional overturning circulation. J Clim 26(22):9155–9174

    Article  Google Scholar 

  • Sato M, Hansen J, McCormick M, Pollack J (1993) Stratospheric aerosol optical depths, 1850–1990. J Geophys Res-Atmos 98(D12):22987–22994. doi:10.1029/93JD02553

    Article  Google Scholar 

  • Sedlacek J, Mysak LA (2009) A model study of the Little Ice Age and beyond: changes in ocean heat content, hydrography and circulation since 1500. Clim Dyn 33(4):461–475. doi:10.1007/s00382-008-0503-6

    Article  Google Scholar 

  • Semenov VA, Latif M, Dommenget D, Keenlyside NS, Strehz A, Martin T, Park W (2010) The Impact of North Atlantic-Arctic multidecadal variability on northern hemisphere surface air temperature. J Clim 23(21):5668–5677. doi:10.1175/2010JCLI3347.1

    Article  Google Scholar 

  • Stenchikov G, Delworth TL, Ramaswamy V, Stouffer RJ, Wittenberg A, Zeng F (2009) Volcanic signals in oceans. J Geophys Res-Atmos, vol 114. doi:10.1029/2008JD011673

  • Stott PA, Jones GS, Lowe JA, Thorne P, Durman C, Johns TC, Thelen JC (2006) Transient climate simulations with the HadGEM1 climate model: causes of past warming and future climate change. J Clim 19(12):2763–2782. doi:10.1175/JCLI3731.1

    Article  Google Scholar 

  • Sutton R, Hodson D (2005) Atlantic Ocean forcing of North American and European summer climate. Science 309(5731):115–118. doi:10.1126/science.1109496

    Article  Google Scholar 

  • Swingedouw D, Terray L, Cassou C, Voldoire A, Salas-Melia D, Servonnat J (2011) Natural forcing of climate during the last millennium: fingerprint of solar variability. Clim Dyn 36(7–8):1349–1364. doi:10.1007/s00382-010-0803-5

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An SI, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus JH, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie SP, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20(19):4899–4919. doi:10.1175/JCLI4283.1

    Article  Google Scholar 

  • Vellinga M, Wood RA (2008) Impacts of thermohaline circulation shutdown in the twenty-first century. Clim Change 91(1–2):43–63. doi:10.1007/s10584-006-9146-y

    Article  Google Scholar 

  • Vellinga M, Wu P (2004) Low-latitude freshwater influence on centennial variability of the Atlantic thermohaline circulation. J Clim 17(23):4498–4511

    Article  Google Scholar 

  • Wood KR, Overland JE (2010) Early 20th century Arctic warming in retrospect. Int J Climatol 30(9):1269–1279. doi:10.1002/joc.1973

    Google Scholar 

  • Wood R, Vellinga M, Thorpe R (2003) Global warming and thermohaline circulation stability. Philos Trans R Soc Lond Ser A-Math Phys Eng Sci 361(1810):1961–1974. doi:10.1098/rsta.2003.1245

    Article  Google Scholar 

  • Yoon JH, Zeng N (2010) An Atlantic influence on Amazon rainfall. Clim Dyn 34(2–3):249–264. doi:10.1007/s00382-009-0551-6

    Article  Google Scholar 

  • Zanchettin D, Timmreck C, Graf HF, Rubino A, Lorenz S, Lohmann K, Krger K, Jungclaus J (2011) Bi-decadal variability excited in the coupled oceanatmosphere system by strong tropical volcanic eruptions. Clim Dyn, pp 1–26. doi:10.1007/s00382-011-1167-1

  • Zhang R, Delworth TL (2006) Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys Res Lett 33(17) doi:10.1029/2006GL026267

  • Zhang R, Vallis GK (2007) The role of bottom vortex stretching on the path of the north Atlantic western boundary current and on the northern recirculation gyre. J Phys Oceanogr 37(8):2053–2080. doi:10.1175/JPO3102.1

    Article  Google Scholar 

  • Zhong Y, Miller GH, Otto-Bliesner BL, Holland MM, Bailey DA, Schneider DP, Geirsdottir A (2011) Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism. Clim Dyn 37(11–12):2373–2387. doi:10.1007/s00382-010-0967-z

    Article  Google Scholar 

  • Zorita E, Von Storch H, Gonzalez-Rouco F, Cubasch U, Luterbacher J, Legutke S, Fischer-Bruns I, Schlese U (2004) Climate evolution in the last five centuries simulated by an atmosphere-ocean model: global temperatures, the North Atlantic Oscillation and the Late Maunder Minimum. Meteorol Z 13(4):271–289. doi:10.1127/0941-2984/2004/0013-0271

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Community’s 7th framework programme (FP7/2007–2013) under grant agreement No. GA212643 (THOR: “Thermohaline Overturning—at Risk” 2008–2012) and was supported by the Joint DECC and Defra Hadley Centre Climate Programme, DECC/Defra (GA01101). The authors would like to thank Gareth Jones for setting up the NAT simulations, Steven Hardiman and Sarah Ineson for valuable discussions, and three anonymous reviewers who helped to substantially improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew B. Menary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menary, M.B., Scaife, A.A. Naturally forced multidecadal variability of the Atlantic meridional overturning circulation. Clim Dyn 42, 1347–1362 (2014). https://doi.org/10.1007/s00382-013-2028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-2028-x

Keywords

Navigation