Skip to main content

Advertisement

Log in

Recent past and future patterns of the Etesian winds based on regional scale climate model simulations

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The aim of this work is to investigate the recent past and future patterns of the Etesian winds, one of the most persistent localized wind systems in the world, which dominates the wind regime during warm period over the Aegean Sea and eastern Mediterranean. An objective classification method, the Two Step Cluster Analysis (TSCA), is applied on daily data from regional climate model simulations carried out with RegCM3 for the recent past (1961–1990) and future periods (2021–2050 and 2071–2100) constrained at lateral boundaries either by ERA-40 reanalysis fields or the global circulation model (GCM) ECHAM5. Three distinct Etesian patterns are identified by TSCA with the location and strength of the anticyclonic action center dominating the differences among the patterns. In case of the first Etesian pattern there is a ridge located over western and central Europe while for the other two Etesian patterns the location of the ridge moves eastward indicating a strong anticyclonic center over the Balkans. The horizontal and vertical spatial structure of geopotential height and the vertical velocity indicates that in all three Etesian patterns the anticyclonic action center over central Europe or Balkan Peninsula cannot be considered as an extension of the Azores high. The future projections for the late 21st century under SRES A1B scenario indicate a strengthening of the Etesian winds associated with the strengthening of the anticyclonic action center, and the deepening of Asian thermal Low over eastern Mediterranean. Furthermore the future projections indicate a weakening of the subsidence over eastern Mediterranean which is rather controlled by the deepening of the south Asian thermal Low in line with the projected in future weakening of South Asian monsoon and Hadley cell circulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bartzokas A, Metaxas DA (1995) Factor analysis of some climatological elements in Athens, 1931–1992: covariability and climatic change. Theor Appl Climatol 52:195–205

    Article  Google Scholar 

  • Borhan Y (1998) Mesoscale interactions on wind energy potential in the northern Aegean region: a case study. Renew Sustain Energy Rev 2:353–360

    Article  Google Scholar 

  • Brody LR, Nestor MJR (1985) Regional forecasts for the Mediterranean basin. Technical report, no. 80–110. Naval Environmental Prediction Research Facility, Monterey

  • Burlando M (2009) The synoptic-scale surface wind climate regimes of the Mediterranean Sea according to the cluster analysis of ERA-40 wind fields. Theor Appl Climatol 96:69–83

    Article  Google Scholar 

  • Charney JG (1975) Dynamics of deserts and drought in the Sahel. Q J R Meteorol Soc 101:193–202

    Article  Google Scholar 

  • Chronis T, Raitsos DE, Kassis D, Sarantopoulos A (2011) The summer north Atlantic oscillation influence on the eastern Mediterranean. J Clim 24(21):5584–5596. doi:10.1175/2011JCLI3839.1

    Article  Google Scholar 

  • Eshel G (2002) Mediterranean climates. Israel J Earth Sci 51:157–168

    Article  Google Scholar 

  • Gao X, Shi Y, Song R, Giorgi F, Wang Y, Zhang D (2008) Reduction of future monsoon precipitation over China: comparison between a high resolution RCM simulation and the driving GCM. Meteorol Atmos Phys 100:73–86. doi:10.1007/s00703-008-0296-5

    Article  Google Scholar 

  • Giorgi F, Marinucci M, Bates G (1993a) Development of a second generation regional climate model (RegCM2), Part I: boundary layer and radiative transfer processes. Mon Weather Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci M, Bates G, DeCanio G (1993b) Development of a second generation regional climate model (RegCM2), Part II: convective processes and assimilation of lateral boundary conditions. Mon Weather Rev 121:2814–2832

    Article  Google Scholar 

  • Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699

    Article  Google Scholar 

  • Kallos G, Kotroni V, Lagouvardos K, Papadopoulos A (1998) On the long range transport of air pollutants from Europe to Africa. Geophys Res Lett 25:619–622. doi:10.1029/97GL03317

    Article  Google Scholar 

  • Karapiperis L (1951) On the periodicity of Etesian in Athens. Weather 6:378–379

    Article  Google Scholar 

  • Kaufmann P, Whiteman CD (1999) Cluster-analysis classification of wintertime wind pattern in the Grand Canyon Region. J Appl Meteorol 38:1131–1147

    Article  Google Scholar 

  • Kotroni V, Lagouvardos K, Lalas D (2001) The effect of the island of Crete on the Etesian winds over the Aegean Sea. Q J R Meteorol Soc 127:1917–1937. doi:10.1002/qj.49712757604

    Article  Google Scholar 

  • Lionello P, Sanna A (2005) Mediterranean wave climate variability and its links with NAO and Indian Monsoon. Clim Dyn 25:611–623. doi:10.1007/s00382-005-0025-4

    Article  Google Scholar 

  • Lu J, Vecchi GA, Reichler T (2007) Expansion of the Hadley cell under global warming. Geophys Res Lett 34:L06805. doi:10.1029/2006GL028443

    Google Scholar 

  • Maheras P (1980) Le problème des étésiens. Revue Géographique Méditerranéen 40:55–66

    Google Scholar 

  • Maheras P (1983) Le climat de la mer Egée et de ses marges continentales. Thèse de Doctorat d’Etat. Atelier de reproduction de thèses de Lille III, p 784

  • Maheras P, Tolika K, Anagnostopoulou C, Kolyva-Machaira F (2012) Types de circulation associés au flux des Etésiens dans la mer Egée. 25ème Colloque de l’Association Internationale de Climatologie (AIC). Grenoble 2012:494–498

    Google Scholar 

  • Makrogiannis TJ, Dikaiakos JC (1990) Large scale patterns of atmospheric circulation anomalies associated to long spells of etesian wind-days over Greece. In: Brazdil R (ed) Climatic change in the historical and the instrumental periods. Mararyk University, Brno, pp 307–309

    Google Scholar 

  • May W (2004) Potential future changes in the Indian summer monsoon due to greenhouse warming: analysis of mechanisms in a global time-slice experiment. Clim Dyn 22:389–414. doi:10.1007/s00382-003-0389-2

    Article  Google Scholar 

  • Metaxas DA (1977) The interannual variability of the etesian frequency as a response of atmospheric circulationanomalies. Bull Hell Meteor Soc 2(5):30–40

    Google Scholar 

  • Metaxas DA, Bartzokas A (1994) Pressure covariability over the Atlantic, Europe and N. Africa. application: centers of action for temperature, winter precipitation and summer winds in Athens, Greece. Theor Appl Climatol 49:9–18

    Article  Google Scholar 

  • Mitas CM, Clement A (2005) Has the Hadley cell been strengthening in recent decades? Geophys Res Lett 32:L03809. doi:10.1029/2004GL021765

    Article  Google Scholar 

  • Meteorological Office (1962) Weather in Mediterranean. General meteorology, vol I, 2nd edn. H.M.S.O, London

  • Norušis MJ, Inc. SPSS (2011) IBM SPSS statistics 19 guide to data analysis. Statistical procedures companion. ISBN-10:0-321-74842-5 ISBN-13:978-0-321-74842-3672

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solomon F, Gao X, Rauscher SA, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Bell JL, Diffenbaugh NS, Karmacharya J, Konare A, da Martinez D, Rocha RP, Sloan LC, Steiner AL (2007) Regional climate modelling for the developing world: the ICTP RegCM3 and RegCNET. B Am Meteorol Soc 88:1395–1409

    Article  Google Scholar 

  • Poulos S, Drakopoulos P, Collins M (1997) Seasonal variability in sea surface oceanographic conditions inthe Aegean Sea (eastern Mediterranean): an overview. J Mar Syst 13:225–244

    Article  Google Scholar 

  • Poupkou A, Zanis P, Nastos P, Papanastasiou D, Melas D, Tourpali K, Zerefos C (2011) Present climate trend analysis of the Etesian winds in the Aegean Sea. Theor Appl Climatol 106:459–472. doi:10.1007/s00704-011-0443-7

    Article  Google Scholar 

  • Prezerakos GN (1984) Does the extension of the Azores’ anticyclone towards the balkans really exist? Arch Meteorol Geophys Bioclimatol A33:217–227

    Article  Google Scholar 

  • Reddaway JM, Bigg GR (1996) Climatic change over the Mediterranean and links to the more general atmospheric circulation. Int J Climatol 16:651–661

    Article  Google Scholar 

  • Repapis C, Zerefos C, Tritakis B (1978) On the Etesians over the Aegean. Proc Acad Athens 52:572–606

    Google Scholar 

  • Rodwell MJ, Hoskins B (1996) Monsoons and the dynamic of deserts. Q J R Meteorol Soc 122:1385–1404

    Article  Google Scholar 

  • Rodwell MJ, Hoskins BJ (2001) Subtropical anticyclones and summer monsoons. J Clim 14:3192–3211

    Article  Google Scholar 

  • Roeckner E, Bäum G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5. Part I: model description. Max Planck Institute for Meteorology Rep. 349, p 127

  • Tolika K, Zanis P, Anagnostopoulou C (2012) Regional climate change scenariosfor Greece: future temperature and precipitation projections from ENSEMBLEs of RCMs. Global Nest J 14(4):407–421

    Google Scholar 

  • Tyrlis E, Lelieveld J (2013) Climatology and dynamics of the summer Etesian winds over the eastern Mediterranean. J Atmos Sci (in press). doi:10.1175/JAS-D-13-035.1

  • Tyrlis E, Lelieveld J, Steil B (2012) The summer circulation over the eastern Mediterranean and the Middle East: influence of the South Asian monsoon. Clim Dyn 40(5):1103–1123. doi:10.1007/s00382-012-1528-4

    Google Scholar 

  • Ueda H, Iwai A, Kuwako K, Hori ME (2006) Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs. Geophys Res Lett 33:L06703. doi:10.1029/2005GL025336

    Article  Google Scholar 

  • Uppala SM, Kallberg PW, Simmons AJ, Andrae U, da Costa Bechtold V, Fiorino M, Gibson JK, Haseler J, Hernandez A, Kelly GA, Li X, Onogi K, Saarinen S, Sokka N, Allan RP, Andersson E, Arpe K, Balmaseda MA, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Caires S, Chevallier F, Dethof A, Dragosavac M, Fisher M, Fuentes M, Hagemann S, Holm E, Hoskins BJ, Isaksen L, Janssen PAEM, Jenne R, McNally AP, Mahfouf JF, Morcrette JJ, Rayner NA, Saunders RW, Simon P, Sterl A, Trenberth KE, Untch A, Vasiljevic D, Viterbo P, Woollen J (2005) TheERA-40 re-analysis. Q J Roy Meteor Soc 131:2961–3012

    Article  Google Scholar 

  • Vecchi GA, Soden BJ (2007) Global warming and the weakening of the tropical circulation. J Clim 20:4316–4340. doi:10.1175/JCLI4258.1

    Article  Google Scholar 

  • Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, San Diego. ISBN 0-12-751965-3

  • Zecchetto S, de Biasio F (2007) Sea surface winds over the Mediterranean basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol 46:814–827

    Article  Google Scholar 

  • Ziv B, Saaroni H, Alpert P (2004) The factors governing the summer regime of the eastern Mediterranean. Int J Climatol 24:1859–1871. doi:10.1002/joc.1113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina Anagnostopoulou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anagnostopoulou, C., Zanis, P., Katragkou, E. et al. Recent past and future patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42, 1819–1836 (2014). https://doi.org/10.1007/s00382-013-1936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1936-0

Keywords

Navigation