Skip to main content

Advertisement

Log in

Transient twenty-first century changes in daily-scale temperature extremes in the United States

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

A key question for climate mitigation and adaptation decisions is how quickly significant changes in temperature extremes will emerge as greenhouse gas concentrations increase, and whether that emergence will be uniform between hot and cold extremes and across different geographic areas. We use a high-resolution, multi-member ensemble climate model experiment over the United States (U.S.) to investigate the transient response of the annual frequency, duration and magnitude of 8 daily-scale extreme temperature indices during the twenty-first century of the A1B emissions scenario. We evaluate the time of emergence of a permanent exceedance (PE) above the colder part of the historical (1980–2009) extremes distribution, and the time of emergence of a new norm (NN) centered on the historical maxima (for hot extremes) or minima (for cold extremes). We find that during the twenty-first century, hot extremes permanently exceed the historical distribution’s colder half over large areas of the U.S., and that the hot extremes distribution also becomes centered on or above the historical distribution’s maxima. The changes are particularly robust for the exceedance of the annual 95th percentile of daily maximum temperature over the West and the Northeast (with the earliest emergence of a PE by 2030 and of a NN by 2040), for warm days over the Southwest (with the earliest emergence of a PE by 2020 and of a NN by 2030), and tropical nights over the eastern U.S. (with the earliest emergence of a PE by 2020 and of a NN by 2030). Conversely, no widespread emergence of a PE or a NN is found for most cold extremes. Exceptions include frost day frequency (with a widespread emergence of a PE below the historical median frequency by 2030 and of a NN by 2040 over the western U.S.), and cold night frequency (with an emergence of a PE below the historical median frequency by 2040 and of a NN by 2060 in virtually the entire U.S.). Our analysis implies a transition over the next half century to a climate of recently unprecedented heat stress in many parts of the U.S., along with cold extremes that, although less frequent, remain at times as long and as severe as are found in the current climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alexander LV, Zhang X, Peterson TC et al (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res. doi:10.1029/2005JD006290

    Google Scholar 

  • Anderson BT (2011) Near-term increase in frequency of seasonal temperature extremes prior to the 2°C global warming target. Clim Change 108:581–589. doi:10.1007/s10584-011-0196-4

    Article  Google Scholar 

  • Anderson GB, Bell ML (2009) Weather-related mortality: how heat, cold and heat waves affect mortality in the United States. Epidemiology 20:205–213. doi:10.1097/EDE.0b013e318190ee08

    Article  Google Scholar 

  • Ashfaq M, Bowling LC, Cherkauer K et al (2010) Influence of climate model biases and daily-scale temperature and precipitation events on hydrological impacts assessment: a case study of the United States. J Geophys Res. doi:10.1029/2009JD012965

    Google Scholar 

  • Ballester J, Rodó X, Giorgi F (2009) Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35:1191–1205. doi:10.1007/s00382-009-0641-5

    Article  Google Scholar 

  • Basu R, Samet JM (2002) Relation between elevated ambient temperature and mortality: a review of the epidemiologic evidence. Epidemiol Rev 24:190–202. doi:10.1093/epirev/mxf007

    Article  Google Scholar 

  • Brown SJ, Caesar J, Ferro CAT (2008) Global changes in extreme daily temperature since 1950. J Geophys Res 113:1–11. doi:10.1029/2006JD008091

    Google Scholar 

  • Butler EE, Huybers P (2013) Adaptation of US maize to temperature variations. Nat Clim Ch 3:68–72. doi:10.1038/nclimate1585

    Article  Google Scholar 

  • Cattiaux J, Vautard R, Cassou C et al (2010) Winter 2010 in Europe: a cold extreme in a warming climate. Geophys Res Lett 37:1–6. doi:10.1029/2010GL044613

    Article  Google Scholar 

  • CH2011 (2011) Swiss climate change scenarios CH2011. Zurich, Switzerland

  • Christidis N, Stott PA, Brown SJ (2011) The role of human activity in the recent warming of extremely warm daytime temperatures. J Clim 24:1922–1930. doi:10.1175/2011JCLI4150.1

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N et al (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533. doi:10.1038/nature03972

    Article  Google Scholar 

  • Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435. doi:10.1175/JCLI3877.1

    Article  Google Scholar 

  • Clark RT, Murphy JM, Brown SJ (2010) Do global warming targets limit heatwave risk? Geophys Res Lett 37:1–5. doi:10.1029/2010GL043898

    Article  Google Scholar 

  • Cohen JL, Furtado JC, Barlow MA et al (2012) Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ Res Lett 7:014007. doi:10.1088/1748-9326/7/1/014007

    Article  Google Scholar 

  • Collins WD, Bitz CM, Blackmon ML et al (2006) The community climate system model version 3 (CCSM3). J Clim 19:2122–2143. doi:10.1175/JCLI3761.1

    Article  Google Scholar 

  • Daly C, Taylor G, Gibson W (1997) The prism approach to mapping precipitation and temperature, pp 1–4

  • Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333. doi:10.1126/science.1188566

    Article  Google Scholar 

  • De Vries H, Haarsma RJ, Hazeleger W (2012) Western European cold spells in current and future climate. Geophys Res Lett 39:1–6. doi:10.1029/2011GL050665

    Google Scholar 

  • Deser C, Phillips A, Bourdette V, Teng H (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38:527–546. doi:10.1007/s00382-010-0977-x

    Article  Google Scholar 

  • Deutsch CA, Tewksbury JJ, Huey RB et al (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci 105:6668–6672. doi:10.1073/pnas.0709472105

    Article  Google Scholar 

  • Diffenbaugh NS, Ashfaq M (2010) Intensification of hot extremes in the United States. Geophys Res Lett. doi:10.1029/2010GL043888

    Google Scholar 

  • Diffenbaugh NS, Scherer M (2011) Observational and model evidence of global emergence of permanent, unprecedented heat in the 20th and 21st centuries. Clim Change 107:615–624. doi:10.1007/s10584-011-0112-y

    Article  Google Scholar 

  • Diffenbaugh NS, Scherer M (2012) Using climate impacts indicators to evaluate climate model ensembles: temperature suitability of premium winegrape cultivation in the United States. Clim Dyn. doi:10.1007/s00382-012-1377-1

    Google Scholar 

  • Diffenbaugh NS, Pal JS, Trapp RJ, Giorgi F (2005) Fine-scale processes regulate the response of extreme events to global climate change. Proc Natl Acad Sci 102:15774–15778. doi:10.1073/pnas.0506042102

    Article  Google Scholar 

  • Diffenbaugh NS, Giorgi F, Raymond L, Bi X (2007) Indicators of 21st century socioclimatic exposure. Proc Natl Acad Sci 104:20195–20198

    Article  Google Scholar 

  • Diffenbaugh NS, Krupke CH, White MA, Alexander CE (2008) Global warming presents new challenges for maize pest management. Environ Res Lett 3:044007. doi:10.1088/1748-9326/3/4/044007

    Article  Google Scholar 

  • Diffenbaugh NS, Ashfaq M, Scherer M (2011a) Transient regional climate change: analysis of the summer climate response in a high-resolution, century-scale ensemble experiment over the continental United States. J Geophys Res 116:1–16. doi:10.1029/2011JD016458

    Google Scholar 

  • Diffenbaugh NS, White MA, Jones GV, Ashfaq M (2011b) Climate adaptation wedges: a case study of premium wine in the western United States. Environ Res Lett 6:024024. doi:10.1088/1748-9326/6/2/024024

    Article  Google Scholar 

  • Diffenbaugh NS, Hertel TW, Scherer M, Verma M (2012) Response of corn markets to climate volatility under alternative energy futures. Nat Clim Ch 2:1–5. doi:10.1038/nclimate1491

    Article  Google Scholar 

  • Easterling DR (2002) Recent change in frost days and the frost-free season in the United States. Bull Am Meteorol Soc 83:1327–1332

    Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C et al (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074. doi:10.1126/science.289.5487.2068

    Article  Google Scholar 

  • Favre A, Gershunov A (2009) North Pacific cyclonic and anticyclonic transients in a global warming context: possible consequences for Western North American daily precipitation and temperature extremes. Clim Dyn 32:969–987. doi:10.1007/s00382-008-0417-3

    Article  Google Scholar 

  • Filleul L, Larrieu S, Lefranc A (2011) Extreme temperatures and mortality. In: Health E-CJONBT-E of E (ed) Encyclopedia of environmental health. Elsevier, Burlington, pp 693–699

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3:398–403. doi:10.1038/ngeo866

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Vidale PL et al (2007) Soil moisture–atmosphere interactions during the 2003 European summer heat wave. J Clim 20:5081–5099. doi:10.1175/JCLI4288.1

    Article  Google Scholar 

  • Francis JA, Vavrus SJ (2012) Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys Res Lett 39:1–6. doi:10.1029/2012GL051000

    Google Scholar 

  • Francis JA, Chan W, Leathers DJ et al (2009) Winter northern hemisphere weather patterns remember summer Arctic sea-ice extent. Geophys Res Lett 36:1–5. doi:10.1029/2009GL037274

    Google Scholar 

  • Frich P, Alexander LV, Della-Marta P et al (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212. doi:10.3354/cr019193

    Article  Google Scholar 

  • Garcíca-Herrera R, Díaz J, Trigo RM et al (2010) A review of the European summer heat wave of 2003. Critical Rev Environ Sci Technol 40:267–306. doi:10.1080/10643380802238137

    Article  Google Scholar 

  • Gershunov A, Douville H (2008) Extensive summer hot and cold extremes under current and possible future climatic conditions: Europe and North America. In: Diaz HF, Murnane RJ (ed) Climate extremes and society. Cambridge University Press, Cambridge, pp 74–98

  • Giorgi F, Bi X (2009) Time of emergence (TOE) of GHG-forced precipitation change hot-spots. Geophys Res Lett 36:1–6. doi:10.1029/2009GL037593

    Google Scholar 

  • Giorgi F, Diffenbaugh NS, Gao XJ et al (2008) The regional climate change hyper-matrix framework. Eos Trans Am Geophys Union 89:445. doi:10.1029/2008EO450001

    Google Scholar 

  • Giorgi F, Im E-S, Coppola E et al (2011) Higher hydroclimatic intensity with global warming. J Clim 24:5309–5324. doi:10.1175/2011JCLI3979.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107. doi:10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2012) Time of emergence of climate signals. Geophys Res Lett. doi:10.1029/2011GL050087

    Google Scholar 

  • Huynen MMTE, Martens P, Schram D et al (2001) The impact of heat waves and cold spells on mortality rates in the Dutch population. Environ Health Perspect 109:463–470

    Article  Google Scholar 

  • IPCC Working Groups I and II (2011) IPCC SREX summary for policymakers. Text 1–29

  • Joshi M, Hawkins E, Sutton R et al (2011) Projections of when temperature change will exceed 2°C above pre-industrial levels. Nat Clim Ch 1:407–412. doi:10.1038/nclimate1261

    Article  Google Scholar 

  • Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, Cambridge

  • Klein Tank A, Zwiers FW, Zhang X (2009) Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. Report, World Climate Data and Monitoring Programme (WCDMP) series, WCDMP-72

  • Kodra E, Steinhaeuser K, Ganguly AR (2011) Persisting cold extremes under 21st-century warming scenarios. Geophys Res Lett. doi:10.1029/2011GL047103

    Google Scholar 

  • Kunkel KE, Liang X-Z, Zhu J (2010) Regional climate model projections and uncertainties of U.S. Summer Heat Waves. J Clim 23:4447–4458. doi:10.1175/2010JCLI3349.1

    Article  Google Scholar 

  • Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8:4623–4648. doi:10.3390/ijerph8124623

    Article  Google Scholar 

  • Mahlstein I, Knutti R, Solomon S, Portmann RW (2011) Early onset of significant local warming in low latitude countries. Environ Res Lett 6:034009. doi:10.1088/1748-9326/6/3/034009

    Article  Google Scholar 

  • Mearns LO, Gutowski W, Jones R et al (2009) A regional climate change assessment program for North America. Eos Trans Am Geophys Union 90:311. doi:10.1029/2009EO360002

    Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997. doi:10.1126/science.1098704

    Article  Google Scholar 

  • Meehl GA, Tebaldi C, Nychka D (2004) Changes in frost days in simulations of twenty-first century climate. Clim Dyn 23:495–511. doi:10.1007/s00382-004-0442-9

    Article  Google Scholar 

  • Meehl GA, Washington WM, Santer BD et al (2006) Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J Clim 19:2597–2616. doi:10.1175/JCLI3746.1

    Article  Google Scholar 

  • Meehl GA, Covey C, Taylor KE et al (2007a) THE WCRP CMIP3 multimodel dataset: a New Era in climate change research. Bull Am Meteorol Soc 88:1383–1394. doi:10.1175/BAMS-88-9-1383

    Article  Google Scholar 

  • Meehl GA, Stocker TF, Collins WD et al (2007b) Global climate projections. In: Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Meehl GA, Stocker TF, Collins WD et al (2007c) Global climate projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Morak S, Hegerl GC, Kenyon J (2011) Detectable regional changes in the number of warm nights. Geophys Res Lett. doi:10.1029/2011GL048531

    Google Scholar 

  • Nakicenovic N, Davidson O, Davis G et al (2000) Special report on emissions scenarios, intergovernmental panel on climate change special reports on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Orlowsky B, Seneviratne SI (2011) Global changes in extreme events: regional and seasonal dimension. Clim Change. doi:10.1007/s10584-011-0122-9

    Google Scholar 

  • Pal JS, Giorgi F, Bi X (2004) Consistency of recent European summer precipitation trends and extremes with future regional climate projections. Geophys Res Lett 31:L13202. doi:10.1029/2004GL019836

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X et al (2007) Regional climate modeling for the developing world: the ICTP RegCM3 and RegCNET. Bull Am Meteorol Soc 88:1395–1409. doi:10.1175/BAMS-88-9-1395

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317. doi:10.1038/nature04188

    Article  Google Scholar 

  • Portmann RW, Solomon S, Hegerl GC (2009) Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States. Proc Natl Acad Sci 106:7324–7329. doi:10.1073/pnas.0808533106

    Article  Google Scholar 

  • Räisänen J, Ylhäisi JS (2011) Cold months in a warming climate. Geophys Res Lett 38:1–6. doi:10.1029/2011GL049758

    Google Scholar 

  • Rogelj J, Meinshausen M, Knutti R (2012) Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat Clim Ch 2:248–253

    Article  Google Scholar 

  • Schlenker W, Roberts MJ (2009) Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc Natl Acad Sci. doi:10.1073/pnas.0906865106

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107:9552–9555. doi:10.1073/pnas.0913352107

    Article  Google Scholar 

  • Smit B, Wandel J (2006) Adaptation, adaptive capacity and vulnerability. Global Environ Change 16:282–292. doi:10.1016/j.gloenvcha.2006.03.008

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature. doi:10.1029/2001JB001029

    Google Scholar 

  • Stott PA, Gillett NP, Hegerl GC et al (2010) Detection and attribution of climate change: a regional perspective. Wiley Interdisciplinary Reviews: Climate Change. doi:10.1002/wcc.34

  • Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi:10.1175/BAMS-D-11-00094.1

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2007) Going to the extremes. Clim Change 82:233–234

    Article  Google Scholar 

  • UNFCCC (2010) Report of the conference of the parties on its fifteenth session, held in Copenhagen from 7 to 19 December 2009, pp 1–43

  • Van der Linden P, Mitchell JFB (2009) ENSEMBLES: climate change and its impacts: summary of research and results from the ENSEMBLES project, pp 1–160

  • Vavrus S, Walsh JE, Chapman WL, Portis D (2006) The behavior of extreme cold air outbreaks under greenhouse warming. Int J Climatol 26:1133–1147. doi:10.1002/joc.1301

    Article  Google Scholar 

  • Walker M, Diffenbaugh NS (2009) Evaluation of high-resolution simulations of daily-scale temperature and precipitation over the United States. Clim Dyn 33:1131–1147. doi:10.1007/s00382-009-0603-y

    Article  Google Scholar 

  • White MA, Diffenbaugh NS, Jones GV et al (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci. doi:10.1073/pnas.0603230103

    Google Scholar 

  • Williams J, Jackson S, Kutzbach J (2007) Projected distributions of novel and disappearing climates by 2100 AD. Proc Natl Acad Sci. doi:10.1073/pnas.0606292104

    Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrological implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 189–216. doi:10.1023/B:CLIM.0000013685.99609.9e

  • Zwiers FW, Zhang X, Feng Y (2011) Anthropogenic influence on long return period daily temperature extremes at regional scales. J Clim 24:881–892. doi:10.1175/2010JCLI3908.1

    Article  Google Scholar 

Download references

Acknowledgments

We thank two anonymous reviewers for their insightful and constructive comments. The CAM3 and RegCM3 simulations were generated and stored using computing resources provided by the Rosen Center for Advanced Computing (RCAC) at Purdue University, and analyzed using computing resources provided by the Center for Computational Earth and Environmental Science (CEES) at Stanford University. We thank the NCAR CCSM3 Climate Change Working Group for access to the CCSM3 simulations at NCAR. We thank the NOAA/OAR/ESRL PSD for providing NCEP data, at http://www.esrl.noaa.gov/psd/, and the PRISM Climate Group, Oregon State University, for providing their data at http://prism.oregonstate.edu. Our work was supported by NIH award 1R01AI090159-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Scherer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scherer, M., Diffenbaugh, N.S. Transient twenty-first century changes in daily-scale temperature extremes in the United States. Clim Dyn 42, 1383–1404 (2014). https://doi.org/10.1007/s00382-013-1829-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1829-2

Keywords

Navigation