Skip to main content

Advertisement

Log in

Future changes in Central Europe heat waves expected to mostly follow summer mean warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Daily output from the PRUDENCE ensemble of regional climate simulations for the end of the twentieth and twenty-first centuries over Europe is used to show that the increasing intensity of the most damaging summer heat waves over Central Europe is mostly due to higher base summer temperatures. In this context, base temperature is defined as the mean of the seasonal cycle component for those calendar days when regional heat waves occur and is close, albeit not identical, to the mean temperature for July–August. Although 36–47% of future Central Europe July and August days at the end of the twenty-first century are projected to be extreme according to the present day climatology, specific changes in deseasonalized heat wave anomalies are projected to be relatively small. Instead, changes in summer base temperatures appear much larger, clearly identifiable and of the same order of magnitude as changes in the whole magnitude of heat waves. Our results bear important consequences for the predictability of central European heat wave intensity under global warming conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander LV, Arblaster JM (2008) Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int J Climatol. doi:10.1002/joc.1730

  • Ballester J, Douville H, Chauvin F (2009) Present-day climatology and projected changes of warm and cold days in the CNRM-CM3 global climate model. Clim Dyn 32:35–54

    Article  Google Scholar 

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26:489–511

    Article  Google Scholar 

  • Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31:L02202. doi:10.1029/2003GL018857

    Article  Google Scholar 

  • Beniston M, Diaz HF (2004) The 2003 heat wave as an example of summers in a greenhouse climate? Observations and climate model simulations for Basel, Switzerland. Glob Planet Change 44:73–81

    Article  Google Scholar 

  • Black E, Blackburn M, Harrison G, Hoskins B, Methven J (2004) Factors contributing to the summer 2003 European heatwave. Weather 59:217–223

    Article  Google Scholar 

  • Box JE, Rinke A (2002) Evaluation of Greenland ice sheet surface climate in the HIRHAM Regional Climate Model using automatic weather station data. J Clim 16:1302–1319

    Google Scholar 

  • Christensen JH, Carter TR, Giorgi F (2002) PRUDENCE employs new methods to assess European climate change. EOS 83:147

    Article  Google Scholar 

  • Christensen JH, Carter TR, Rummukainen M, Amanatidis G (2007) Evaluating the performance and utility of Regional Climate Models: the PRUDENCE project. Clim Change 81:1–6

    Article  Google Scholar 

  • Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. doi:10.1029/2008GL035694

    Article  Google Scholar 

  • Clark RT, Brown SJ, Murphy JM (2006) Modeling northern hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435

    Article  Google Scholar 

  • DeGaetano AT, Allen RJ (2002) Trends in twentieth-century temperature extremes across the United States. J Clim 15:3188–3205

    Article  Google Scholar 

  • Déqué M, Rowell DP, Lüthi D, Giorgi F, Christensen JH, Rockel B, Jacob D, Kjellström E, de Castro M, van den Hurk B (2007) An intercomparison of regional climate simulations for Europe: assessing uncertainties in model projections. Clim Change 81:53–70

    Article  Google Scholar 

  • Dhainaut JF, Claessens YE, Ginsburg C, Riou B (2004) Unprecedented heat-related deaths during the 2003 heat wave in Paris: consequences on emergency departments. Crit Care 8:1–2

    Article  Google Scholar 

  • Döscher R, Willén U, Jones C, Rutgersson A, Meier HEM, Hansson U, Graham LP (2002) The development of the coupled regional ocean-atmosphere model RCAO. Boreal Environ Res 7:183–192

    Google Scholar 

  • Ellis FP, Princé HP, Lovatt G, Whittington RM (1980) Mortality and morbidity in Birmingham during the 1976 heatwave. Q J Med 49:1–8

    Google Scholar 

  • Fink AH, Brücher T, Krüger A, Leckebusch GC, Pinto JG, Ulbrich U (2004) The 2003 European summer heatwaves and drought—synoptic diagnosis and impacts. Weather 59:209–216

    Article  Google Scholar 

  • Fischer EM, Seneviratne SI, Lüthi D, Schär C (2007) Contribution of land-atmosphere coupling to recent European summer heat waves. Geophys Res Lett 34:L06707. doi:10.1029/2006GL029068

    Article  Google Scholar 

  • Gibelin AL, Déqué M (2003) Anthropogenic climate change over the Mediterranean region simulated by a global variable resolution model. Clim Change 20:327–339

    Google Scholar 

  • Giorgi F (2006a) Climate change hot-spots. Geophys Res Lett 33:L08707. doi:10.1029/2006GL025734

    Article  Google Scholar 

  • Giorgi F (2006b) Regional climate modelling: status and perspectives. J Phys IV 139:101–118

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res 104:6549–6562

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004a) Means, trends and interannual variability in a regional climate change experiment over Europe. Part I: present day climate (1961–1990). Clim Dyn 22:733–756

    Article  Google Scholar 

  • Giorgi F, Bi X, Pal JS (2004b) Means, trends and interannual variability in a regional climate change experiment over Europe. Part II: future climate scenarios (2071–2100). Clim Dyn 23:839–858

    Article  Google Scholar 

  • Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New MA (2007) European daily high-resolution gridded dataset of surface temperature and precipitation. Available online from http://www.ensembles-eu.org/

  • Hudson DA, Jones RG (2002) Simulations of present-day and future climate over southern Africa using HadAM3H. Hadley Centre Technical Note no 38, Met Office, Exeter, UK

  • IPCC (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacob DA (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73

    Article  Google Scholar 

  • Jones PD, Lister DH (2002) The daily temperature record for St. Petersburg (1743–1996). Clim Change 53:253–267

    Article  Google Scholar 

  • Jones PD, Horton EB, Folland CK, Hulme M, Parker DE, Basnett TA (1999) The use of indices to identify changes in climatic extremes. Clim Change 42:131–149

    Article  Google Scholar 

  • Jones CG, Ullerstig A, Willén U, Hansson U (2004) The Rossby Centre regional atmospheric climate model (RCA). Part I: model climatology and performance characteristics for present climate over Europe. Ambio 33:199–210

    Google Scholar 

  • Katz RW, Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kjellström E, Bärring L, Jacob D, Jones R, Lenderink G, Schär C (2007) Modelling daily temperature extremes: recent climate and future changes over Europe. Clim Change 81:249–265

    Article  Google Scholar 

  • Lenderink G, van den Hurk B, van Meijgaard E, van Ulden A, Cuijpers H (2003) Simulation of present-day climate in RACMO2: first results and model developments. KNMI Technical Report 252

  • Mathieu PP, Sutton RT, Dong B, Collins M (2004) Predictability of winter climate over the North Atlantic European Region during ENSO events. J Clim 17:1953–1974

    Article  Google Scholar 

  • Mearns LO, Katz RW, Schneider SH (1984) Extreme high temperature events: changes in their probabilities with changes in mean temperature. J Appl Meteorol 23:1601–1613

    Article  Google Scholar 

  • Meehl GA, Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 13:994–997

    Article  Google Scholar 

  • Meehl GA, Karl T, Easterling DR, Changnon S, Peelke R Jr, et al (2000) An introduction to trends in extreme weather and climate events: observations, socioeconomic impacts, terrestrial ecological impacts, and model projections. Bull Am Meteorol Soc 81: 413–416

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  Google Scholar 

  • Patz JA, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    Article  Google Scholar 

  • Pfister C, Brázdil R, Glaser R, Barriendos M, Camuffo D, Deutsch M, Dobrovolný P, Enzi S, Guidoboni E, Kotyza O, Militzer S, Rácz L, Rodrigo FS (1999) Documentary evidence on climate in sixteenth-century Europe. Clim Change 43:55–110

    Article  Google Scholar 

  • Rodó X, Pascual M, Fuchs G, Faruque ASG (2002) ENSO and cholera: a nonstationary link related to climate change? PNAS 99:12901–12906

    Article  Google Scholar 

  • Roeckner E, Bengtsson L, Feichter J, Lelieveld J, Rodhe H (1999) Transient climate change simulations with a coupled atmosphere-ocean GCM including the tropospheric sulfur cycle. J Clim 12:3004–3032

    Article  Google Scholar 

  • Sanchez E, Gallardo C, Gaertner MA, Arribas A, Castro A (2004) Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Glob Planet Change 44:163–180

    Article  Google Scholar 

  • Sartor F, Snacken R, Demuth C, Walckiers D (1995) Temperature, ambient ozone levels, and mortality during summer, 1994, in Belgium. Environ Res 70:105–113

    Article  Google Scholar 

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336

    Article  Google Scholar 

  • Schwartz J (2005) Who is sensitive to extremes of temperature? A case-only analysis. Epidemiology 16:67–72

    Article  Google Scholar 

  • Steppeler J, Doms G, Schättler U, Bitzer HW, Gassmann A, Damrath U, Gregoric G (2003) Meso-gamma scale forecasts using the nonhydrostatic model LM. Meteorol Atmos Phys 82:75–96

    Article  Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432:610–614

    Article  Google Scholar 

  • Tanser FC, Sharp B, le Sueur D (2003) Potential effect of climate change on malaria transmission in Africa. Lancet 362:1792–1798

    Article  Google Scholar 

  • Tebaldi C, Hayhoe K, Arblaster JM, Meehl GA (2006) Going to the extremes. Clim Change 79:185–211

    Article  Google Scholar 

  • Vidale PL, Lüthi D, Frei C, Seneviratne S, Schär C (2003) Predictability and uncertainty in a regional climate model. J Geophys Res 108, D18 4586. doi:10.1029/2002JD002810

  • Vörösmarty CJ, Green P, Salisbury J, Lammers RB (2000) Global water resources: vulnerability from climate change and population growth. Science 289:284–288

    Article  Google Scholar 

  • WHO (2004) Heat waves: risks and responses (Health and Global Environmental Change, Series No. 2)

  • Yan Z, Jones PD, Davies TD, Moberg A, Bergström H, Camuffo D, Cocheo C, Maugeri M, Demarée GR, Verhoeve T, Thoen E, Barriendos M, Rodríguez R, Martín-Vide J, Yang C (2002) Trends of extreme temperatures in Europe and China based on daily observations. Clim Change 53:355–392

    Article  Google Scholar 

Download references

Acknowledgments

J.B. acknowledges support from the European Science Foundation (Exchange grant, Ref. 1464), the Catalan Ministry of University and Research and the support by the Spanish Ministry of Science through the PANDORA project. Climate simulations have been provided through the PRUDENCE data archive, funded by the EU through contract EVK2-CT2001-00132. We also acknowledge the observed dataset from the EU-FP6 project ENSEMBLES (http://www.ensembles-eu.org) and the data providers in the ECA&D project (http://eca.knmi.nl).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Ballester.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ballester, J., Rodó, X. & Giorgi, F. Future changes in Central Europe heat waves expected to mostly follow summer mean warming. Clim Dyn 35, 1191–1205 (2010). https://doi.org/10.1007/s00382-009-0641-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0641-5

Keywords

Navigation