Skip to main content

Advertisement

Log in

Changes in tropical Atlantic interannual variability from a substantial weakening of the meridional overturning circulation

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In response to a substantial weakening of the Atlantic Meridional Overturning Circulation (AMOC)—from a coupled ocean–atmosphere general circulation model experiment—significant changes in the interannual variability are found over the tropical Atlantic, characterized by an increase of variance (by ~150 %) in boreal late spring-early summer and a decrease of variance (by ~60 %) in boreal autumn. This study focuses on understanding physical mechanisms responsible for these changes in interannual variability in the tropical Atlantic. It demonstrates that the increase of variability in spring is a consequence of an increase in the variance of the El Niño-Southern Oscillation, which has a large impact on the tropical Atlantic via anomalous surface heat fluxes. Winter El Niño (La Niña) affects the eastern equatorial Atlantic by decreasing (increasing) cloud cover and surface wind speed which is associated with anomalous downward (upward) short wave radiation and reduced (enhanced) upward latent heat fluxes, creating anomalous positive (negative) sea surface temperature (SST) anomalies over the region from winter to spring. On the other hand, the decrease of SST variance in autumn is due to a deeper mean thermocline which weakens the impact of the thermocline movement on SST variation. The comparison between the model results and observations is not straightforward owing to the influence of model biases and the lack of a major MOC weakening event in the instrumental record. However, it is argued that the basic physical mechanisms found in the model simulations are likely to be robust and therefore have relevance to understanding tropical Atlantic variability in the real world, perhaps with modified seasonality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • An SI (2008) A review on interdecadal changes in the nonlinearity of the El Niño-Southern oscillation. Theor Appl Climatol 97:29–40

    Article  Google Scholar 

  • Balan Sarojini B, Gregory JM, Tailleux R, Biggs GR, Blaker AT, Cameron D, Edwards NR, Megann AP, Shaffrey LC, Sinha B (2011) High frequency variability of the Atlantic meridional overturning circulation. Ocean Sci Discuss 8(219–246):2011

    Google Scholar 

  • Bjerknes J (1969) Atmospheric teleconnections from equatorial Pacific. Mon Wea Rev 97:163–172

    Article  Google Scholar 

  • Brayshaw DJ, Woolings T, Vellinga M (2009) Tropical and extratropical responses of the North Atlantic atmospheric circulation to a sustained weakening of the MOC. J Clim 22:3146–3155

    Article  Google Scholar 

  • Breugem W-P, Hazeleger W, Haarsma RJ (2006) Multimodel study of tropical Atlantic variability and change. Geophys Res Lett 33:L23706. doi:10.1029/2006GL027831

    Article  Google Scholar 

  • Chang P, Ji L, Li H (1997) A decadal climate variation in the tropical Atlantic ocean from thermodynamic air-sea interactions. Nature 385:516–518

    Article  Google Scholar 

  • Chang P, Fang Y, Saravanan R, Ji L, Seidel H (2006) The cause of the fragile relationship between the Pacific el Niño and the Atlantic Niño. Nature 443:324–328

    Article  Google Scholar 

  • Chang CY, Carton JA, Grodsky SA, Nigam S (2007) Seasonal climate of the tropical Atlantic sector in the NCAR community climate system model 3: error structure and probable causes of errors. J Clim 21:1053–1070

    Article  Google Scholar 

  • Chang P, Zhang R, Hazeleger W, Wen C, Wan X, Ji K, Haarsma R, Breugem WP, Seidel H (2008) Oceanic link between abrupt changes in the North Atlantic ocean and the African monsoon. Nat Geosci 1:444

    Article  Google Scholar 

  • Chen W, Dong B, Lu R (2010) Impact of the Atlantic Ocean on the multidecadal fluctuation of El Niño–Southern Oscillation–South Asian monsoon relationship in a coupled general circulation model. J Geophys Res 115:D17109. doi:10.1029/2009JD013596

    Article  Google Scholar 

  • Chiang JCH, Kushnir Y, Zebiak SE (2000) Interdecadal changes in eastern Pacific ITCZ variability and its influence on the Atlantic ITCZ. Geophys Res Lett 27:3687–3690

    Article  Google Scholar 

  • Chiang K, Cheng W, Bitz CM (2008) Fast teleconnections to the tropical Atlantic sector from Atlantic thermohaline adjustment. Geophys Res Lett 35:L07704. doi:10.1029/2008GL033292

    Article  Google Scholar 

  • Collins M, Tett SFB, Cooper C (2001) The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 17:61–81

    Article  Google Scholar 

  • Collins WD et al (2006) the community climate system model version 3 (CCSM3). J Clim 19:2122–2143. doi:10.1175/JCLI3761.1

    Article  Google Scholar 

  • Cunningham SA et al (2007) Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. Science 317:935–938. doi:10.1126/science.1141304

    Article  Google Scholar 

  • Curry R, Dickson B, Yashayaev I (2003) A change in the freshwater balance over the Atlantic Ocean over the past four decades. Nature 426:826–829

    Article  Google Scholar 

  • Dahl KA, Broccoli AJ, Stouffer RJ (2005) Assessing the role of North Atlantic freshwater forcing in millennial scale climate variability: a tropical Atlantic perspective. Clim Dyn 24:325–346. doi:10.1007/s00382-004-0499-5

    Article  Google Scholar 

  • De Almeida RAF, Nobre P (2012) On the Atlantic cold tongue mode and the role of the Pacific ENSO. Ocean Sci Discuss 9:163–185. doi:10.5194/osd-9-163-2012

    Article  Google Scholar 

  • Dong BW, Sutton RT (2002a) Adjustment of the coupled ocean-atmosphere system to a sudden change in the thermocline circulation. Geophys Res Lett 29:1728

    Google Scholar 

  • Dong BW, Sutton RT (2002b) Variability in North Atlantic heat content and heat transport in a coupled ocean–atmosphere GCM. Clim Dyn 19:485–497. doi:10.1007/s00382-002-0239-7

    Article  Google Scholar 

  • Dong B, Sutton RT (2005) Mechanism of interdecadal thermohaline circulation variability in 10 a coupled ocean–atmosphere GCM. J Clim 18:1117–1135

    Article  Google Scholar 

  • Dong BW, Sutton RT (2007) Enhancement of ENSO variability by a weakened Atlantic thermocline circulation in a coupled GCM. J Clim 20:4920–4939

    Article  Google Scholar 

  • Dong B, Sutton RT, Scaife AA (2006) Multidecadal modulation of El Niño-Southern Oscillation (ENSO) variance by Atlantic Ocean sea surface temperatures. Geophys Res Lett 33:Lo8705

    Google Scholar 

  • Enfield DB, Mayer DA (1997) Tropical Atlantic SST variability and its relation to El Niño-Southern Oscillation. J Geophys Res 102:929–945

    Article  Google Scholar 

  • Fedorov A, Philander SG (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168

    Article  Google Scholar 

  • Grodsky S, Carton J, Nigam S, Okumura Y (2012) Tropical Atlantic Biases in CCSM4. J Clim 25:3684–3701. doi:10.1175/JCLI-D-11-00315.1

    Article  Google Scholar 

  • Guilyardi E (2005) El Niño-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 26:329–348

    Article  Google Scholar 

  • Haarsma RJ, Campos E, Hazeleger W, Severijns C (2008) Influence of the meridional overturning circulation on tropical Atlantic climate and variability. J Clim 21:1403–1416

    Article  Google Scholar 

  • Hazeleger W, Drijfhout S (2006) Subtropical cells and meridional overturning circulation pathways in the tropical Atlantic. J Geophys Res 111:C03013. doi:10.1029/2005JC002942

    Article  Google Scholar 

  • Jochum M, Malanotte-Rizzoli P (2001) Influence of the meridional overturning circulation on tropical-subtropical pathways. J Phys Oceanogr 31:1313–1323

    Article  Google Scholar 

  • Joseph R, Nigam S (2006) ENSO evolution and teleconnections in IPCC’s twentieth-century climate simulations: realistic representation? J Clim 19:4360–4377

    Article  Google Scholar 

  • Keenlyside N, Latif M (2007) Understanding equatorial Atlantic interannual variability, J. Climate 20:131–142

    Article  Google Scholar 

  • Knight JR, Allan RJ, Folland CK, Vellinga M, Mann ME (2005) A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys Res Lett 32:L20708. doi:10.1029/2005GL024233

    Article  Google Scholar 

  • Kraus EB, Turner JS (1967) A one-dimensional model of the seasonal thermocline II. The general theory and its consequences. Tellus 19:98–106

    Article  Google Scholar 

  • Large WG, Danabasoglu G (2006) Attribution and impacts of upper ocean biases in CCSM3. J Clim 19:2325–2346

    Article  Google Scholar 

  • Latif M, Barnett TP (1995) Interaction of the tropical oceans. J Clim 8:952–964

    Article  Google Scholar 

  • Laurian A, Drijfhout SS, Hazeleger W, van Dorland R (2009) Global surface cooling: the atmospheric fast feedback response to a collapse of the thermohaline circulation. Geophys Res Lett 36:L20708. doi:10.1029/2009GL040938

    Article  Google Scholar 

  • López-Parages J, Rodríguez-Fonseca B (2012) Multidecadal modulation of El Niño influence on the Euro-Mediterranean rainfall. Geophys Res Lett 39:L02704. doi:10.1029/2011GL050049

    Article  Google Scholar 

  • Lu R-Y, Dong B-W (2008) Response of the Asian summer monsoon to a weakening of Atlantic thermohaline circulation. Adv in Atmos Sci 25:723–736

    Article  Google Scholar 

  • Lübbecke JF, McPhaden MJ (2012) On the inconsistent relationship between Pacific and Atlantic Niños. J Clim 25:4294–4303

    Article  Google Scholar 

  • Lübbecke JF, Böning CW, Keenlyside NS, Xie SP (2010) On the connection between Benguela and equatorial Atlantic Niños and the role of the South Atlantic Anticyclone. J Geophys Res 115:C09015. doi:10.1029/2009JC005964

    Article  Google Scholar 

  • Martín-Rey M, I Polo, B Rodríguez-Fonseca, F. Kucharski (2012) Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci Mar 76(S1 ISSN: 0214-8358) (in press)

    Google Scholar 

  • Mechoso CR et al (1995) The seasonal cycle over the tropical Pacific in coupled ocean-atmosphere general circulation models. Mon Weather Rev 123:2825–2838

    Article  Google Scholar 

  • Moon B-K, Yeh S-W, Dewitte B, Jhun J-G, Kang I-S, Kirtman BP (2004) Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophys Res Lett 31:L03203. doi:10.1029/2003GL018829

    Article  Google Scholar 

  • Munnich M, Neelin JD (2005) Seasonal influence of ENSO on the Atlantic ITCZ and equatorial South America. Geophys Res Lett 32:L21709. doi:10.1029/2005GL023900

    Article  Google Scholar 

  • Neelin JD, Chou C, Su H (2003) Tropical drought regions in global warming and El Niño teleconnections. Geophys Res Lett 30:2275. doi:10.1029/2003GL018625

    Article  Google Scholar 

  • Nobre P, Shukla J (1996) Variations of sea surface temperature, wind stress and rainfall over the tropical Atlantic and South America. J Clim 9:2464–2479

    Article  Google Scholar 

  • Okumura Y, Xie SP (2004) Interaction of the Atlantic equatorial cold tongue and the African Monsoon. J Clim 17:3589–3602

    Article  Google Scholar 

  • Pacanowsky RC, Philander SGH (1981) Parameterization of vertical mixing in numerical models of tropical oceans. J Phys Oceanogr 11:1443–1451

    Article  Google Scholar 

  • Philander SGH (1990) El Niño, La Niña, and the Southern Oscillation. International Geophysics Series, 46, Academic Press, p 293

  • Polo I, Rodriguez-Fonseca B, Losada T, Garcia-Serrano J (2008) Tropical Atlantic variability modes (1979–2002). Part I: time-evolving SST modes related to West African rainfall. J Clim 21:6457–6475. doi:10.1175/2008JCLI2607.1

    Article  Google Scholar 

  • Polo I, Martin-Rey M, Rodriguez-Fonseca B, Mechoso CR, Kucharski F (2013) Processes in the influence of tropical Atlantic Sea surface temperatures on Pacific la Niña Onset (submitted)

  • Richter I, Xie SP (2008) On the origin of equatorial Atlantic biases in coupled general circulation models. Clim Dyn 31:587–598. doi:10.1007/s00382-008-0364-z

    Article  Google Scholar 

  • Richter I, Behera SK, Masumoto Y, Taguchi B, Sasaki H, Yamagat T (2013) Multiple causes of interannual sea surface temperature variability in the equatorial Atlantic Ocean. Nat Geosci 6:43–47. doi:10.1038/NGEO1660

    Google Scholar 

  • Robson J, Sutton R, Lohmann K, Smith D, Palmer MD (2012) Causes of the rapid warming of the North Atlantic Ocean in the mid 1990s. J Clim 25:4116–4134. doi:10.1175/JCLI-D-11-00443.1

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Janicot S, Mohino E, Losada T, Bader J, Caminade C, Fontaine B, Garcia-Serrano J, Gervois S, Joly M, Polo I, Ruti P, Roucou P, Voldoire A (2010) Interannual and decadal SST-forced responses of the West African monsoon. Atm Sci Lett 12(1):67–74. doi:10.1002/asl.308

    Article  Google Scholar 

  • Rodríguez-Fonseca B, Polo I, LosadaT, Mohino E, Martin-Rey M (2012) The relation betweeen The Atlantic and Pacific Niños in CMIP simulations: a multidecadal modulation. Extended Proceeding of World Climate Research Project Open Science Conference (WCRP OSC), Denver, USA

  • Rodríguez-Fonseca B, Polo I, García-Serrano J, Losada T, Mohino E, Mechoso CR, Kucharski F (2009) Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys Res Lett 36:L20705. doi:10.1029/2009GL040048

    Article  Google Scholar 

  • Saravanan R, Chang P (2000) Interaction between tropical Atlantic variability and El Niño–Southern Oscillation. J Clim 13:2177–2194

    Article  Google Scholar 

  • Send U, Lankhorst M, Kanzow T (2011) Observation of decadal change in the Atlantic meridional overturning circulation using 10 years of continuous transport data. Geophys Res Lett 38:L24606. doi:10.1029/2011GL049801

    Article  Google Scholar 

  • Spencer H, Sutton R, Slingo JM (2007) El Niño in a coupled climate model: sensitivity to changes in mean state induced by heat flux and wind stress corrections. J Clim 20:2273–2298

    Article  Google Scholar 

  • Stouffer RJ et al (2006) Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J Clim 19:1365–1387

    Article  Google Scholar 

  • Su H, Neelin JD (2002) Teleconnection mechanisms for tropical Pacific descents anomalies during El Niño. J Atm Sci 59:2694–2712

    Article  Google Scholar 

  • Sutton RT, Hodson DLR (2007) Climate response to basin-scale warming and cooling of the North Atlantic Ocean. J Clim 20:891–907

    Article  Google Scholar 

  • Tett SFB, Johns TC, Mitchell JFB (1997) Global and regional variability in a coupled AOGCM. Clim Dyn 13:303–323

    Article  Google Scholar 

  • Thomson DJ (1982) Spectrum estimation and harmonic analysis. Proc IEEE 70(1982):1055–1096

    Article  Google Scholar 

  • Timmermann A, An S, Krebs U, Goosse H (2005) ENSO suppression due to a weakening of the North Atlantic thermohaline circulation. J Clim 18:3122–3139

    Article  Google Scholar 

  • Timmermann A, Okumura Y, An S-I, Clement A, Dong B, Guilyardi E, Hu A, Jungclaus J, Krebs U, Renold M, Stocker TF, Stouffer RJ, Sutton R, Xie S-P, Yin J (2007) The influence of a weakening of the Atlantic meridional overturning circulation on ENSO. J Clim 20:4899–4919

    Article  Google Scholar 

  • Tokinaga H, Xie SP (2011) Weakening of the equatorial Atlantic cold tongue over the past six decades. Nat Geosci. doi:10.1038/NGEO1078

    Google Scholar 

  • Tokinaga J, Xie SP, Timmermann A, McGregor S, Ogata T, Kubota H, Okumura YM (2012) Regional patterns of tropical Indo-Pacific climate change: evidence of the Walker circulation weakening. J Clim 25:1689–1710

    Article  Google Scholar 

  • van Oldenborgh GJ, te Raa LA, Dijkstra HA, Philip SY (2009) Frequency- or amplitude-dependent effects of the atlantic meridional overturning on the tropical pacific ocean. Ocean Sci 5:293–301. doi:10.5194/os-5-293-2009

    Article  Google Scholar 

  • Vecchi GA, Sonden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76. doi:10.1038/nature04744

    Article  Google Scholar 

  • Vellinga M, Wood RA (2002) Global climatic impacts of a collapse of the Atlantic thermohaline circulation. Clim Change 54:251–267

    Article  Google Scholar 

  • Wang B, An SI (2002) A mechanism for decadal changes of ENSO behavior: roles of background wind changes. Clim Dyn 18:475–486

    Article  Google Scholar 

  • Wang C, Enfield DB (2001) The tropical Western hemisphere warm pool. Geophys Res Lett 28:1635–1638

    Article  Google Scholar 

  • Wang C, Lee SK, Mechoso CR (2010) Interhemispheric Influence of the Atlantic warm pool on the Southeastern Pacific. J Clim 23:404–418

    Article  Google Scholar 

  • Wen C, Chang P, Saravanan R (2010) Effect of Atlantic meridional overturning circulation changes on tropical Atlantic Sea Surface temperature variability: a 21/2-layer reduced-gravity ocean model study. J Clim 23:312–332

    Article  Google Scholar 

  • Willis JK (2010) Can in situ floats and satellite altimeters detect long-term changes in Atlantic Ocean overturning? Geophys Res Lett 37:L06602. doi:10.1029/2010GL042372

    Article  Google Scholar 

  • Woollings T, Gregory JM, Pinto JG, Reyers M, Brayshaw DJ (2012) Response of the North Atlantic storm track to climate change shaped by ocean-atmosphere coupling. Nat Geosci 5:313–317

    Article  Google Scholar 

  • Wright DK (1997) A new eddy mixing parametrization and ocean general circulation model. Int WOCE Newslett 29:27–29

    Google Scholar 

  • Wu L, Li C, Yang C, Xie SP (2008) Global Teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J Clim 21:3002–3019

    Article  Google Scholar 

  • Xie S-P, Carton JA (2004) Tropical Atlantic variability: patterns, mechanisms, and impacts Earth Climate: The Ocean–Atmosphere Interaction, Geophys Monogr Am Geophys Union, 121–141

  • Xie S-P, Miyama T, Wang Y, Xu H, De Szoeke SP, Small RJO, Richards KJ, Mochiziku T, Awaji T (2007) A regional ocean-atmosphere model for eastern Pacific climate: toward reducing tropical biases. J Clim 20:1504–1522

    Article  Google Scholar 

  • Zebiak SE (1993) Air-sea interaction in the equatorial Atlantic region. J Clim 6:1567–1586

    Article  Google Scholar 

  • Zhai X, Sheldon L (2012) On the North Atlantic ocean heat content change between 1955–1970 and 1980–1995. J Clim 25:3619–3628. doi:10.1175/JCLI-D-11-00187.1

    Article  Google Scholar 

  • Zhang R, Delworth TL (2005) Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation. J Clim 18:1853–1860

    Article  Google Scholar 

Download references

Acknowledgments

Irene Polo has been supported by a postdoctoral fellowship funded by the Spanish Government. This work has been also possible thanks to the Spanish projects: Tropical Atlantic Variability and the Climate Shift (TRACS-CGL2009-10285) and MOVAC. BD and RTS are supported by the U.K. National Centre for Atmospheric Science-Climate (NCAS-Climate) at the University of Reading. We also wish to thank two anonymous reviewers for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Polo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polo, I., Dong, B.W. & Sutton, R.T. Changes in tropical Atlantic interannual variability from a substantial weakening of the meridional overturning circulation. Clim Dyn 41, 2765–2784 (2013). https://doi.org/10.1007/s00382-013-1716-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-013-1716-x

Keywords

Navigation