Skip to main content

Advertisement

Log in

Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as −100 Wm−2 (−18%). The seasonal change of A produces an increase of SW by up to +25 Wm−2 (+4.5%). The annual mean radiative effect is estimated to be −(21–22) Wm−2 for wv, and +(2–3) Wm−2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm−2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by −0.027, with a corresponding decrease in ΔSWA by 0.41 Wm−2 (−14.9%). Atmospheric aerosols produce a reduction of SW as low as −32 Wm−2 (−6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of −28 Wm−2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (−120.6 ± 4.3) for 0.1 < A < 0.2, and (−41.2 ± 1.6) Wm−2 for 0.5 < A < 0.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • ACIA (2005) Impacts of a warming Arctic: Arctic climate impact assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Berk A, Anderson GP, Acharya PK, Hoke ML, Chetwind JH, Bernstein LS et al (1998) MODTRAN4 Version 3 Revision 1 User’s Manual, Technical Report. Air Force Research Laboratory, Hanscom Air Force Base, MA, USA

  • Bonasoni P et al (2010) Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal Climate Observatory-Pyramid (5079 m). Atmos Chem Phys 10:7515–7531

    Article  Google Scholar 

  • Brock CA et al (2010) Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC) project. Atmos Chem Phys Discuss 10:27361–27434

    Article  Google Scholar 

  • Conant WC (2000) An observational approach for determining aerosol surface radiative forcing: results from the first field phase of INDOEX. J Geophys Res 105:15347–15360

    Article  Google Scholar 

  • Curry JA, Schramm JL, Ebert EE (1995a) Sea ice-albedo climate feedback mechanism. J Clim 8:240–247

    Article  Google Scholar 

  • Curry JA, Schramm JL, Serreze MC, Ebert EE (1995b) Water vapor feedback over the Arctic Ocean. J Geophys Res 100:223–229

    Article  Google Scholar 

  • de Villiers RA, Ancellet G, Pelon J, Quennehen B, Schwarzenboeck A, Gayet JF, Law KS (2010) Airborne measurements of aerosol optical properties related to early spring transport of mid-latitude sources into the Arctic. Atmos Chem Phys 10:5011–5030

    Article  Google Scholar 

  • Dong X, Xi B, Crosby K, Long CN, Stone R (2010) A 10-yr climatology of arctic cloud properties and surface radiation budget derived from ground-based observations at ARM NSA site and NOAA barrow observatory. J Geophys Res D12124. doi:10.1029/2009JD013489

  • Dubovik O, King MD (2000) A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J Geophys Res 105:20673–20696

    Article  Google Scholar 

  • Eck TF et al (2009) Optical properties of boreal region biomass burning aerosols in central Alaska and seasonal variation of aerosol optical depth at an Arctic coastal site. J Geophys Res 114:D11201. doi:10.1029/2008JD010870

    Article  Google Scholar 

  • Engvall AC, Ström J, Tunved P, Krejci R, Schlager H, Minikin A (2009) The radiative effect of an aged, internally mixed Arctic aerosol originating from lower-latitude biomass burning. Tellus B 61:677–684

    Article  Google Scholar 

  • Generoso S, Bey I, Attié JL, Bréon FM (2007) A satellite- and model-based assessment of the 2003 Russian fires: impact on the Arctic region. J Geophys Res 112:D15302. doi:10.1029/2006JD008344

    Article  Google Scholar 

  • Grenfell TC, Perovich DK (2008) Incident spectral irradiance in the Arctic Basin during the summer and fall. J Geophys Res 113:D12117. doi:10.1029/2007JD009418

    Article  Google Scholar 

  • Hatzianastassiou N, Matsoukas C, Fotiadi A, Pavlakis KG, Drakakis E, Hatzidimitriou D, Vardavas I (2005) Global distribution of Earth’s surface shortwave radiation budget. Atmos Chem Phys 5:2847–2867

    Article  Google Scholar 

  • Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman Y, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET: a federated instrument network and data archive for aerosol characterization. Rem Sens Environ 66:1–16

    Article  Google Scholar 

  • Inoue J, Kikuchi T, Perovich TK, Morison JH (2005) A drop in mid-summer shortwave radiation induced by changes in the ice-surface condition in the central Arctic. Geophys Res Lett 32:L13603. doi:10.1029/2005GL023170

    Article  Google Scholar 

  • Intrieri J, Shupe M, Uttal T, McCarty B (2002) An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J Geophys Res 107. doi:10.1029/2000JC000423

  • IPCC (2007) Intergovernmental panel on climate change, fourth assessment report—the physical science basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Iziomon MG, Lohmann U, Quinn PK (2006) Summertime pollution events in the Arctic and potential implications. J Geophys Res 111:D12206. doi:10.1029/2005JD006223

    Article  Google Scholar 

  • Jakobson E, Vihma T (2010) Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. Int J Clim 30:2175–2194

    Article  Google Scholar 

  • Kurita N (2011) Origin of Arctic water vapor during the ice-growth season. Geophys Res Lett 38:L02709. doi:10.1029/2010GL046064

    Article  Google Scholar 

  • Law KS, Stohl A (2007) Arctic air pollution: origins and impacts. Science 315:1537–1540

    Article  Google Scholar 

  • Lindsay RW, Zhang J (2005) The thinning of arctic sea ice, 1988–2003: have we passed a tipping point? J Climate 18:4879–4894

    Article  Google Scholar 

  • Lindsay RW, Zhang J, Schweiger AJ, Steele MA (2008) Seasonal predictions of ice extent in the Arctic Ocean. J Geophys Res 113:C02023. doi:10.1029/2007JC004259

    Article  Google Scholar 

  • Liu J, Schaaf C, Strahler A, Jiao Z, Shuai Y, Zhang Q, Roman M, Augustine JA, Dutton EG (2009) Validation of moderate resolution imaging spectroradiometer (MODIS) albedo retrieval algorithm: dependence of albedo on solar zenith angle. J Geophys Res 114. doi:10.1029/2008JD009969

  • Long CN, Ackerman TP (2000) Identification of clear skies from broadband pyranometer measurements and calculation of downwelling, shortwave cloud effects. J Geophys Res 105:609–626

    Article  Google Scholar 

  • Markus T, Stroeve JC, Miller J (2009) Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. J Geophys Res 114:C12024. doi:10.1029/2009JC005436

    Article  Google Scholar 

  • McGuire AD, Chapin FS III, Walsh JE, Wirth C (2006) Integrated regional changes in Arctic climate feedbacks: implications for the global climate system. Annu Rev Environ Resour 31:61–91

    Article  Google Scholar 

  • Meloni D, di Sarra A, Biavati G, DeLuisi JJ, Monteleone F, Pace G, Piacentino S, Sferlazzo D (2007) Seasonal behavior of Saharan dust events at the Mediterranean island of Lampedusa in the period 1999–2005. Atmos Environ 41:3041–3056

    Article  Google Scholar 

  • Perovich D, Meier W, Maslanik J, Richter-Menge J (2010) Sea ice cover. In: Arctic Report Card 2010. http://www.arctic.noaa.gov/reportcard

  • Porter DF, Cassano JJ, Serreze MC, Kindig DN (2010) New estimates of the large-scale Arctic atmospheric energy budget. J Geophys Res 115. doi:10.1029/2009JD012653

  • Quinn PK, Shaw G, Andrews E, Dutton EG, Ruoho-Airola T, Gong SL (2007) Arctic haze: current trends and knowledge gaps. Tellus 59B:99–114

    Google Scholar 

  • Rinke A, Melsheimer C, Dethloff K, Heygster G (2009) Arctic total water vapor: comparison of regional climate simulations with observations, and simulated decadal trends. J Hydrometeor 10:113–129

    Article  Google Scholar 

  • Schaaf CB et al (2002) First operational BRDF, albedo nadir reflectance products from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  • Sedlar et al (2010) A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing. Clim Dyn. doi:10.1007/s00382-010-0937-5

  • Serreze MC, Francis JA (2006) The Arctic amplification debate. Clim Change 76:241–264

    Article  Google Scholar 

  • Serreze MC, Barry RG, Walsh JE (1995) Atmospheric water vapor characteristics at 70 degrees north. J Clim 8(4):719–731

    Article  Google Scholar 

  • Shine KP (1984) Shortwave flux over high albedo surfaces. Q J R Meteorol Soc 110:747–764

    Article  Google Scholar 

  • Shupe MD, Intrieri JM (2004) Cloud radiative forcing of the Arctic surface: the influence of cloud properties, surface albedo, and solar zenith angle. J Clim 17:616–629

    Article  Google Scholar 

  • Shupe MD, Walden VP, Eloranta E, Uttal T, Campbell JR, Starkweather SM, Shiobara M (2011) Clouds at Arctic atmospheric observatories. Part I: occurrence and macrophysical properties. J Appl Meteor Climatol 50:626–644

    Article  Google Scholar 

  • Smirnov A, Holben BN, Eck TF, Dubovik O, Slutsker I (2000) Cloud screening and 495 quality control algorithms for the AERONET data base. Remote Sens Environ 73:337–349

    Article  Google Scholar 

  • Stamnes K, Tsay SC, Wiscombe W, Jayaweera K (1988) Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl Opt 27:2502–2509

    Article  Google Scholar 

  • Stone RS, Anderson GP, Shettle EP, Andrews E, Loukachine K, Dutton EG, Schaaf C, Roman III MO (2008) Radiative impact of boreal smoke in the Arctic: observed and modelled. J Geophys Res 113: D14S16. doi:10.1029/2007JD009657

  • Stone RS et al (2010) A three dimensional characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April 2009. J Geophys Res 115:D13203. doi:10.1029/2009JD013605

    Article  Google Scholar 

  • Stroeve J, Box JE, Gao F, Liang S, Nolin A, Schaaf C (2005) Accuracy assessment of the MODIS 16-day albedo product for snow: comparisons with Greenland in situ measurements. Remote Sens Environ 94:46–60

    Article  Google Scholar 

  • Stroeve J, Holland MM, Meier W, Scambos T, Serreze M (2007) Arctic sea ice decline: faster than forecast. Geophys Res Lett 34:L09501. doi:10.1029/2007GL029703

    Article  Google Scholar 

  • Stroeve JC, Maslanik J, Serreze MC, Rigor I, Meier W, Fowler C (2011) Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophys Res Lett 38:L02502. doi:10.1029/2010GL045662

    Article  Google Scholar 

  • Tomasi C et al (2007) Aerosols in polar regions: a historical overview based on optical depth and in situ observations. J Geophys Res 112:D16205. doi:10.1029/2007JD008432

    Article  Google Scholar 

  • Treffeisen R, Rinke A, Fortmann M, Dethloff K, Herber A, Yamanouchi T (2005) A case study of the radiative effects of Arctic aerosols in March 2000. Atmos Environ 39:899–911

    Article  Google Scholar 

  • Trenberth KE, Fasullo J, Smith L (2005) Trends and variability in column-integrated atmospheric water vapour. Clim Dyn 24:741–758

    Article  Google Scholar 

  • Wang XJ, Key JR (2003) Recent trends in Arctic surface, cloud, and radiation properties from space. Science 299:1725–1728

    Article  Google Scholar 

  • Warneke C et al (2009) Biomass burning in Siberia and Kazakhstan as an important source for haze over the Alaskan Arctic in April 2008. Geophys Res Lett 36:L02813. doi:10.1029/2008GL036194

    Article  Google Scholar 

  • Warneke C et al (2010) An important contribution to springtime Arctic aerosol from biomass burning in Russia. Geophys Res Lett 37:L01801. doi:10.1029/2009GL041816

    Article  Google Scholar 

  • Wendler G, Moore B, Hartmann B, Stuefer M, Flint R (2004) Effects of multiple reflection and albedo on the net radiation in the pack ice zones of Antarctica. J Geophys Res 109:D06113. doi:10.1029/2003JD003927

    Article  Google Scholar 

  • Wyser K et al (2008) An evaluation of Arctic cloud and radiation processes during the SHEBA year: simulation results from eight Arctic regional climate models. Clim Dyn 30:203–223

    Article  Google Scholar 

  • Zuidema P, Joyce R (2008) Water vapor, cloud liquid water paths, and rain rates over northern high latitude open seas. J Geophys Res 113:D05205. doi:10.1029/2007JD009040

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the project PRIN 2007 (“Dirigibile Italia”), funded by the Italian Ministry for University and Research, and by the Italian Antarctic Program. MODIS data are distributed by the Land Processes Distributed Active Archive Center (LP DAAC), located at the US Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac.usgs.gov). We thank two anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Di Biagio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Biagio, C., di Sarra, A., Eriksen, P. et al. Effect of surface albedo, water vapour, and atmospheric aerosols on the cloud-free shortwave radiative budget in the Arctic. Clim Dyn 39, 953–969 (2012). https://doi.org/10.1007/s00382-011-1280-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-011-1280-1

Keywords

Navigation