Skip to main content

Advertisement

Log in

The role of mean state on changes in El Niño’s flavor

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Recently, many studies have argued for the existence of two types of El Niño phenomena based on different spatial distributions: the conventional El Niño [or Eastern Pacific (EP) El Niño], and the Central Pacific (CP) El Niño. Here, we investigate the decadal modulation of CP El Niño occurrences using a long-term coupled general circulation model simulation, focusing, in particular, on the role of climate state in the regime change between more and fewer CP El Niño events. The higher occurrence regime of the CP El Niño coincides with the lower occurrence regime of EP El Niño, and vice versa. The climate states associated with these two opposite regimes resemble the leading principal component analysis (PCA) modes of tropical Pacific decadal variability, indicating that decadal change in climate state may lead to regime change in terms of two different types of El Niño. In particular, the higher occurrence regime of CP El Niño is associated with a strong zonal gradient of mean surface temperature in the equatorial Pacific, along with a strong equatorial Trade wind over the area east of the dateline. In addition, the oceanic variables—the mixed layer depth and the thermocline depth—show values indicating increased depth over the western-to-central Pacific. The aforementioned climate states obviously intensify zonal advective feedback, which promotes increased generation of the CP El Niño. Frequent CP El Niño occurrences are not fully described by oceanic subsurface dynamics, and dynamical or thermodynamical processes in the ocean mixed layer and air–sea interaction are important contributors to the generation of the CP El Niño. Furthermore, the atmospheric response with respect to the SSTA tends to move toward the west, which leads to a weak air–sea coupling over the eastern Pacific. These features could be regarded as evidence that the climate state can provide a selection mechanism of the El Niño type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • An S-I (2009) A review of interdecadal changes in the nonlinearity of the El Niño-Southern Oscillation. Theor Appl Climatol 97:29–40

    Article  Google Scholar 

  • An S-I, Jin F-F (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:2573–2576

    Article  Google Scholar 

  • An S-I, Jin F-F (2001) Collective role of thermocline and zonal advective feedbacks in the ENSO mode. J Clim 14:3421–3432

    Article  Google Scholar 

  • An S-I, Jin F-F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An S-I, Ye Z, Hsieh W (2006) Changes in the leading ENSO modes associated with the late 1970s climate shift: role of surface zonal current. Geophys Res Lett 33:L14609

    Article  Google Scholar 

  • An S-I, Ham Y-G, Kug J-S, Timmermann A, Choi J, Kang I-S (2010) The inverse effect of annual mean state and annual cycle changes on ENSO. J Clim 23:1095–1110

    Article  Google Scholar 

  • Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484

    Article  Google Scholar 

  • Ashok K, Behera SK, Rao SA, Weng H, Yamagata T (2007) El Niño Modoki and its teleconnection. J Geophys Res 112. doi: 10.1029/2006JC003798

  • Battisti DS, Hirst AC (1989) Interannual variability in the tropical atmosphere/ocean system: influence of the basic state and ocean geometry. J Atmos Sci 46:1687–1712

    Article  Google Scholar 

  • Bejarano L, Jin F-F (2008) Coexistence of equatorial coupled modes of ENSO. J Clim 21:3051–3067

    Article  Google Scholar 

  • Burgers G, Stephenson DB (1999) The “normality” of El Niño. Geophys Res Lett 26:1027–1030

    Article  Google Scholar 

  • Choi J, An S-I, Dewitte B, Hsieh WW (2009) Interactive feedback between the tropical Pacific decadal oscillation and ENSO in a coupled general circulation model. J Clim 22:6597–6611

    Article  Google Scholar 

  • Cibot C, Maisonnave E, Terray L, Dewitte B (2005) Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model. Clim Dyn 24:823–842

    Article  Google Scholar 

  • Delworth TL et al (2006) GFDL’s CM2 global coupled climate models. Part I: formulation and simulation characteristics. J Clim 19:634–674

    Google Scholar 

  • Dewitte B, Cibot C, Périgaud C, An S-I, Terray L (2007) Interaction between near-annual and ENSO modes in a CGCM simulation: role of the equatorial background mean state. J Clim 20:1035–1052

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Niño changing? Science 288:1997–2002

    Article  Google Scholar 

  • Gill AE (1980) Some simple solutions for heat induced tropical circulation. Quart J R Meteor Soc 106:447–462

    Article  Google Scholar 

  • Gu D, Philander SGH (1997) Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science 275:805–807

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Kang I-S (2007) Role of moist energy advection in formulating anomalous walker circulation associated with El Niño. J Geophys Res 112:D24105. doi:10.1029/2007JD008744

    Article  Google Scholar 

  • Hoerling MP, Kumar A, Zhong M (1997) El Niño, La Niña, and the nonlinearity of their teleconnections. J Clim 10:1769–1786

    Article  Google Scholar 

  • Jin F-F (1997a) An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F (1997b) An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Jin F-F, Kug J-S, An S-I, Kang I-S (2003) A near-annual coupled ocean-atmosphere mode in the equatorial Pacific ocean. Geophy Res Lett 30:1080

    Article  Google Scholar 

  • Kang I-S, Kug J-S (2002) El Niño and La Niña sea surface temperature anomalies: asymmetry characteristics associated with their wind stress anomalies. J Geophys Res 107:4372. doi:10.1029/2001JD000393

    Article  Google Scholar 

  • Kang I-S, Kug J-S, An S-I, Jin F-F (2004) A near-annual Pacific Ocean basin mode. J Clim 17:2478–2488

    Article  Google Scholar 

  • Kao HY, Yu JY (2009) Contrasting Eastern-Pacific and Central-Pacific types of ENSO. J Clim 22:615–632

    Article  Google Scholar 

  • Kleeman R, McCreary JP, Klinger BA (1999) A mechanism for generating ENSO decadal variability. Geophys Res Lett 26:1743–1746

    Article  Google Scholar 

  • Kug J-S, Jin F-F, An S-I (2009) Two-types of El Niño events: cold tongue El Niño and warm pool El Niño. J Clim 22:1499–1515

    Article  Google Scholar 

  • Kug J-S, Choi J, An S-I, Jin F-F, Wittenberg AT (2010) Warm pool and cold tongue El Niño events as simulated by the GFDL 2.1 coupled GCM. J Clim 23:1226–1239

    Article  Google Scholar 

  • Larkin NK, Harrison DE (2005a) On the definition of El Niño and associated seasonal average US weather anomalies. Geophys Res Lett 32:L13705. doi: 10.1029/2005GL022738

  • Larkin NK, Harrison DE (2005b) Global seasonal temperature and precipitation anomalies during El Niño autumn and winter. Geophys Res Lett 32:L16705. doi:10.1029/2005GL022860

    Article  Google Scholar 

  • Monterey GI, Levitus S (1997) Seasonal variability of mixed layer depth for the world ocean. NOAA Atlas NESDIS 14, US Government Printing Office, pp 5

  • Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Yamagata T, Zebiak SE (1998) ENSO theory. J Geophys Res Oceans 103:14261–14290

    Article  Google Scholar 

  • Nonaka M, Xie SP, McCreary JP (2002) Decadal variations in the subtropical cells and equatorial Pacific SST. Geophys Res Lett 29:1116. doi:10.1029/2001GL013717

    Article  Google Scholar 

  • Philander SGH, Pacanowski RC, Lau N-C, Nath MJ (1992) Simulation of ENSO with a global atmospheric GCM coupled to a high-resolution, tropical Pacific Ocean GCM. J Clim 5:308–329

    Article  Google Scholar 

  • Picaut J, Masia F, du Penhoat Y (1997) An advective–reflective conceptual model for the oscillatory nature of the ENSO. Science 277:663–666

    Article  Google Scholar 

  • Rodgers KB, Friederichs P, Latif M (2004) Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J Clim 17:3761–3774

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1987) Global and regional scale precipiation patterns associated with the El Niño/Southern Oscillation. Mon Weather Rev 115:1606–1626

    Article  Google Scholar 

  • Ropelewski CF, Halpert MS (1996) Quantifying Southern Oscillation–precipitation relationship. J Clim 9:1043–1059

    Article  Google Scholar 

  • Schneider N (2000) A decadal spiciness mode in the tropics. Geophys Res Lett 27:257–260

    Article  Google Scholar 

  • Schopf PS, Suarez MJ (1988) Vacillations in a coupled ocean–atmosphere model. J Atmos Sci 45:549–566

    Article  Google Scholar 

  • Sun F, Yu J-Y (2009) A 10–15-year modulation cycle of ENSO intensity. J Clim 22:1718–1735

    Article  Google Scholar 

  • Timmermann A (2003) Decadal ENSO amplitude modulations: a nonlinear paradigm. Glob Planet Change 37:135–156

    Article  Google Scholar 

  • Timmermann A, Jin F-F (2002) A nonlinear mechanism for decadal El Niño amplitude changes. Geophys Res Lett 29:1003. doi:10.1029/2001GL013369

    Article  Google Scholar 

  • Trenberth KE, Carbon JM (2000) The Southern Oscillation revisited: sea level pressures, surface temperatures and precipitation. J Clim 13:4358–4365

    Article  Google Scholar 

  • Wallace JM, Rasmusson EM, Mitchell TP, Kousky VE, Sarachik ES, von Storch H (1998) On the structure and evolution of ENSO-related climate variability in the tropical Pacific: lessons from TOGA. J Geophy Res 103:14169–14240

    Article  Google Scholar 

  • Weng H, Ashok K, Behera SK, Rao A, Yamagata T (2007) Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim Dyn 29. doi: 10.1007/s00382-007-0234-0

  • Wittenberg AT (2009) Are historical records sufficient to constrain ENSO simulations? Geophy Res Lett 36:L12702. doi:10.1029/2009GL038710

    Article  Google Scholar 

  • Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ (2006) GFDL’s CM2 global coupled climate models. Part III: tropical Pacific climate and ENSO. J Clim 19:698–722

    Article  Google Scholar 

  • Ye Z, Hsieh WW (2006) The influence of climate regime shift on ENSO. Clim Dyn 26:823–833

    Article  Google Scholar 

  • Yeh S-W, Kirtman B (2004) Tropical Pacific decadal variability and ENSO amplitude modulation in a CGCM. J Geophys Res 109:C11009. doi:10.1029/2004JC002442

    Article  Google Scholar 

  • Yeh S-W, Kug J-S, Dewitte B, Kwon M-H, Kirtman B, Jin F-F (2009) Recent changes in El Niño and its projection under global warming. Nature 461:511–515

    Article  Google Scholar 

  • Zebiak SE (1984) Tropical atmospheric-ocean interaction and the El Niño/Southern Oscillation phenomenon. Ph.D. Thesis, MIT, pp 261

Download references

Acknowledgment

This work was funded by Grant RACS_2010-2601 from the Korea Meteorological Administration Research and Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il An.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, J., An, SI., Kug, JS. et al. The role of mean state on changes in El Niño’s flavor. Clim Dyn 37, 1205–1215 (2011). https://doi.org/10.1007/s00382-010-0912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0912-1

Keywords

Navigation