Skip to main content

Advertisement

Log in

NAO–ocean circulation interactions in a coupled general circulation model

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The interplay between the North Atlantic Oscillation (NAO) and the large scale ocean circulation is inspected in a twentieth century simulation conducted with a state-of-the-art coupled general circulation model. Significant lead–lag covariance between oceanic and tropospheric variables suggests that the system supports a damped oscillatory mode involving an active ocean–atmosphere coupling, with a typical NAO-like space structure and a 5 years timescale, qualitatively consistent with a mid-latitude delayed oscillator paradigm. The two essential processes governing the oscillation are (1) a negative feedback between ocean gyre circulation and the high latitude SST meridional gradient and (2) a positive feedback between SST and the NAO. The atmospheric NAO pattern appears to have a weaker projection on the ocean meridional overturning, compared to the gyre circulation, which leads to a secondary role for the thermohaline circulation in driving the meridional heat transport, and thus the oscillatory mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Anderson D, Bryan K, Gill A, Pacanowski R (1979) The transient response of the North Atlantic: some model studies. J Geophys Res 84:4795–4815

    Article  Google Scholar 

  • Baringer M, Larsen J (2001) Sixteen years of florida current transport at 27N. Geophys Res Lett 28:3179–3182

    Article  Google Scholar 

  • Bellucci A, Richards KJ (2006) Effects of NAO variability on the North Atlantic Ocean circulation. Geophys Res Lett 33:L02612. doi:10.1029/2005GL024890

    Article  Google Scholar 

  • Blackman R, Tukey JW (1958) The measurement of power spectra from the point of view of communication engineering. Dover, Mineola

    Google Scholar 

  • Bretherton C, Battisti D (2000) An interpretation of the results from atmospheric general circulation models forced by the time history of the observed sea surface temperature distribution. Geophys Res Lett 27:767–770

    Article  Google Scholar 

  • Cayan D (1992) Latent and sensible heat flux anomalies over the Northern oceans: driving the sea surface temperature. J Phys Oceanogr 22:859–881

    Article  Google Scholar 

  • Czaja A, Frankignoul C (2002) Observed impact of Atlantic SST anomalies on the North Atlantic Oscillation. J Clim 15:606–623

    Article  Google Scholar 

  • Czaja A, Marshall J (2001) Observations of atmosphere ocean coupling in the North Atlantic. J R Meteor Soc 127:1893–1916

    Article  Google Scholar 

  • D’Andrea F, Czaja A, Marshall J (2005) Impact of anomalous ocean heat transport on the North Atlantic Oscillation. J Clim 18:4955–4969

    Article  Google Scholar 

  • Deser C, Blackmon R (1993) Surface climate variations over the North Atlantic during winter: 1900–1989. J Clim 10:393–408

    Article  Google Scholar 

  • Eden C, Greatbatch R (2003) A damped decadal oscillation in the North Atlantic climate system. J Clim 16:4043–4060

    Article  Google Scholar 

  • Eden C, Willebrandt J (2001) Mechanisms of interannual to decadal variability in the North Atlantic circulation. J Clim 14:2266–2280

    Article  Google Scholar 

  • Feldstein SB (2000) The timescale, power spectra, and climate noise properties of teleconnection patterns. J Clim 13:4430–4440

    Article  Google Scholar 

  • Ferreira D, Frankignoul C (2005) The transient atmospheric to midlatitude SST anomalies. J Clim 18:1049–1067

    Article  Google Scholar 

  • Fichefet T, Morales-Maqueda MA (1999) Modelling the influence of snow accumulation and snow-ice formation on the seasonal cycle of the Antarctic sea-ice cover. Clim Dyn 15:251–268

    Article  Google Scholar 

  • Frankignoul C, Hasselmann K (1977) Stochastic climate models, part II: applications to sea-surface temperature variability and thermocline variability. Tellus 29:289–305

    Article  Google Scholar 

  • Frankignoul C, Czaja A, L’Heveder B (1998) Air-sea feedback in the North Atlantic and surface boundary conditions for ocean models. J Clim 11:2310–2324

    Article  Google Scholar 

  • Frankignoul C, Kestenare E, Sennéchael N, de Coëtlogon G, D’Andrea F (2000) On decadal-scale ocean-atmosphere interactions in the extended ECHAM1/LSG climate simulation. Clim Dyn 16:333–354

    Article  Google Scholar 

  • Grötzner A, Latif M, Barnett T (1998) A decadal climate cycle in the North Atlantic ocean as simulated by the ECHO coupled GCM. J Clim 11:831-847

    Article  Google Scholar 

  • Gualdi S, Navarra A, Guilyardi E, Delecluse P (2003a) Assessment of the tropical Indo-Pacific climate in the SINTEX CGCM. Ann Geophys 46:1–26

    Google Scholar 

  • Gualdi S, Guilyardi E, Navarra A, Masina S, Delecluse P (2003b) The interannual variability in the tropical Indian Ocean as simulated by a CGCM. Clim Dyn 20:567–582

    Google Scholar 

  • Gualdi S, Scoccimarro E, Navarra A (2007) Changes in tropical cyclone activity due to global warming: results from a high-resolution coupled general circulation model. J Clim (in press)

  • Guilyardi E, Delecluse P, Gualdi S, Navarra A (2003) Mechanisms for ENSO phase change in a coupled GCM. Clim Dyn 16:1141–1158

    Google Scholar 

  • Hurrell J, Kushnir Y, Ottersen G, Visbeck M (2003) An overview of the North Atlantic Oscillation. In: Hurrell J , Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DC

  • Kaplan A, Kushnir Y, Cane M, Blumenthal B (1997) Reduced space optimal analysis for historical datasets:136 years of Atlantic sea surface temperatures. J Geophys Res 102:27835–27860

    Article  Google Scholar 

  • Killworth P, Chelton D, de Szoeke R (1997) The speed of observed and theoretical long extratropical planetary waves. J Phys Oceanogr 27:1946–1966

    Article  Google Scholar 

  • Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S (2007) On the driving processes of the Atlantic meridional overturning circulation. Rev Geophys 45:1–32

    Article  Google Scholar 

  • Latif M, Barnett T (1994) Causes of decadal variability over the North Pacific and North America. Science 266:634–637

    Article  Google Scholar 

  • Latif M, Barnett T (1996) Decadal climate variability over the North Pacific and North America: dynamics and predictability. J Clim 9:2407–2423

    Article  Google Scholar 

  • Luo J, Masson S, Behera S, Delecluse P, Gualdi S, Navarra A, Yamagata T (2003) South pacific origin of the decadal ENSO-like variation as simulated by a coupled GCM. Geophys Res Lett 30, 2250. doi:10.1029/2003GL018649

  • Madden R (1981) A quantitative approach to long range prediction. J Geophys Res 86:9817–9825

    Article  Google Scholar 

  • Marotzke J, Klinger B (2000) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Phys Oceanogr 30:955–970

    Article  Google Scholar 

  • Marshall J, Johnson H, Goodman J (2001) A study of the interaction of the North Atlantic Oscillation with the ocean circulation. J Clim 14:1399–1421

    Article  Google Scholar 

  • Neelin JD, Weng W (1999) Analytical prototypes for ocean-atmosphere interaction at midlatitudes. Part I: coupled feedbacks as a sea surface temperature dependent stochastic process. J Clim 12:697–721

    Article  Google Scholar 

  • Peng S, Whitaker JS (1999) Mechanisms determining the atmospheric response to midlatitude SST anomalies. J Clim 12:1393–1408

    Article  Google Scholar 

  • Peng S, Robinson W, Li S (2002) North Atlantic SST forcing of the NAO and relationships with intrinsic hemispheric variability. Geophys Res Lett 29:1276. doi:10.1029/2001GL014043

    Article  Google Scholar 

  • Peng S, Robinson W, Li S (2003) Mechanisms for the NAO responses to the North Atlantic SST tripole. J Clim 16:1987–2004

    Article  Google Scholar 

  • Rodwell M, Rowell D, Folland C (1999) Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature 398:320–323

    Article  Google Scholar 

  • Saravanan R, McWilliams J (1998) Advective ocean-atmosphere interaction: an analytical stochastic model with implications for decadal variability. J Clim 11:165–188

    Article  Google Scholar 

  • Schneider E, Fan M (2007) Weather noise forcing of surface climate variability. J Atm Sci 64:3265–3280

    Article  Google Scholar 

  • Schott F, Lee T, Zantopp R (1988) Variability of structure and transport of the florida current in the period range of days to seasonal. J Phys Oceanogr 18:1209–1230

    Article  Google Scholar 

  • Stephenson D, Pavan V, Collins M, Junge M, Quadrelli R (2006) North Atlantic Oscillation response to transient greenhouse gas forcing and the impact on European winter climate: a CMIP2 multi-model assessment. Clim Dyn 27:401–420. doi:10.1007/s00382-006-0140-x

    Article  Google Scholar 

  • Storch HV, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, United Kingdom

    Google Scholar 

  • Sutton RT, Allen MR (1997) Decadal predictability of North Atlantic sea surface temperature and climate. Nature 388:563–567

    Article  Google Scholar 

  • Thompson D, Lee S, Baldwin M (2003) Atmospheric processes governing the Northern Hemisphere Annular Mode/North Atlantic Oscillation. In: Hurrell J, Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DC

  • Visbeck M, Chassignet E, Curry RG, Delworth T, Dickson R, Krahmann G (2003) The ocean’s response to North Atlantic Oscillation. In: Hurrell J, Kushnir J, Ottersen G, Visbeck M (eds) The North Atlantic Oscillation: climatic significance and environmental impact. American Geophysical Union, Washington DC

  • Watanabe M, Kimoto M (2000) On the persistence of decadal SST anomalies in the North Atlantic. J Clim 13:3017–3028

    Article  Google Scholar 

  • Wunsch C (1999) The interpretation of short climate records, with comments on the North Atlantic Oscillation and Southern Oscillations. Bull Am Meteor Soc 80:245–255

    Article  Google Scholar 

  • Zorita E, Frankignoul C (1997) Modes of North Atlantic decadal variability in the ECHAM1/LSG coupled atmosphere-ocean general circulation model. J Clim 10:183:200

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Riccardo Farneti and Annalisa Cherchi for stimulating discussions and precious support. Comments from three reviewers considerably improved the original manuscript. This work was supported by the Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC) Project and the European Community ENSEMBLES Project (Contract GOCECT-2003-505539).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bellucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bellucci, A., Gualdi, S., Scoccimarro, E. et al. NAO–ocean circulation interactions in a coupled general circulation model. Clim Dyn 31, 759–777 (2008). https://doi.org/10.1007/s00382-008-0408-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-008-0408-4

Keywords

Navigation