Skip to main content

Advertisement

Log in

Quantifying uncertainties in projections of extremes—a perturbed land surface parameter experiment

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Uncertainties in the climate response to a doubling of atmospheric CO2 concentrations are quantified in a perturbed land surface parameter experiment. The ensemble of 108 members is constructed by systematically perturbing five poorly constrained land surface parameters of global climate model individually and in all possible combinations. The land surface parameters induce small uncertainties at global scale, substantial uncertainties at regional and seasonal scale and very large uncertainties in the tails of the distribution, the climate extremes. Climate sensitivity varies across the ensemble mainly due to the perturbation of the snow albedo parameterization, which controls the snow albedo feedback strength. The uncertainty range in the global response is small relative to perturbed physics experiments focusing on atmospheric parameters. However, land surface parameters are revealed to control the response not only of the mean but also of the variability of temperature. Major uncertainties are identified in the response of climate extremes to a doubling of CO2. During winter the response both of temperature mean and daily variability relates to fractional snow cover. Cold extremes over high latitudes warm disproportionately in ensemble members with strong snow albedo feedback and large snow cover reduction. Reduced snow cover leads to more winter warming and stronger variability decrease. As a result uncertainties in mean and variability response line up, with some members showing weak and others very strong warming of the cold tail of the distribution, depending on the snow albedo parametrization. The uncertainty across the ensemble regionally exceeds the CMIP3 multi-model range. Regarding summer hot extremes, the uncertainties are larger than for mean summer warming but smaller than in multi-model experiments. The summer precipitation response to a doubling of CO2 is not robust over many regions. Land surface parameter perturbations and natural variability alter the sign of the response even over subtropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Alexander L, Zhang X, Peterson T, Caesar J, Gleason B, Tank AK, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson D, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre J (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111. doi:10.1029/2005JD006290

  • Allen M, Stott P, Mitchell J, Schnur R, Delworth T (2000) Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature 407:617–620

    Article  Google Scholar 

  • Barnett DN, Brown SJ, Murphy JM, Sexton DMH, Webb MJ (2006) Quantifying uncertainty in changes in extreme event frequency in response to doubled CO2 using a large ensemble of GCM simulations. Clim Dyn 26. doi:10.1007/s00382-005-0097-1

  • Beniston M (2004) The 2003 heat wave in Europe: a shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophys Res Lett 31. doi:10.1029/2003GL018857

  • Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees. Wadsworth, Belmont, CA 1

  • Burke E and Brown S (2008) Evaluating uncertainties in the projection of future drought. J Hydrometeorol 9:292–299

    Article  Google Scholar 

  • Caesar J, Alexander L, Vose R (2006) Large-scale changes in observed daily maximum and minimum temperatures: creation and analysis of a new gridded data set. J Geophys Res 111. doi:10.1029/2005JD006280

  • Clark RT, Brown SJ, Murphy JM (2006) Modeling Northern Hemisphere summer heat extreme changes and their uncertainties using a physics ensemble of climate sensitivity experiments. J Clim 19:4418–4435

    Article  Google Scholar 

  • Dai A, Trenberth K, and Karl T (1999) Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J Clim 12:2451–2473

    Article  Google Scholar 

  • Easterling D, Evans J, Groisman P, Karl T, Kunkel K, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • ECMWF (2007) IFS documentation—Cy31r1: part IV, physical processes. ECMWF, Full scientific and technical documentation. http://www.ecmwf.int/research/ifsdocs/CY31r1/index.html

  • Fischer EM, Schär C (2009) Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim Dyn. doi:10.1007/s00382-008-0473-8

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact european heatwaves. Nat Geosci. doi:10.1038/NGEO866

  • Frich P, Alexander L, Della-Marta P, Gleason B, Haylock M, Tank A, Peterson T (2002) Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim Res 19:193–212

    Article  Google Scholar 

  • Gent P, Yeager S, Neale R, Levis S, Bailey D (2010) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dyn 34(6):819–833

    Article  Google Scholar 

  • Gregory J and Mitchell J (1995) Simulation of daily variability of surface temperature and precipitation over Europe in the current and 2 × CO2 climates using the UKMO climate model. Q J R Meteorol Soc 121:1451–1476

    Google Scholar 

  • Grize L, Huss A, Thommen O, Schindler C, Braun-Fahrländer C (2005) Heat wave 2003 and mortality in Switzerland. Swiss Med Wkly 135:200–205

    Google Scholar 

  • Hadley S, Hernandez J, Broniak C, Blasing T (2006) Responses of energy use to climate change: a climate modeling study. Geophys Res Lett 33:L17703

    Article  Google Scholar 

  • Hawkins E and Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90:1095–1107

    Article  Google Scholar 

  • Hémon D, Jougla E, Laurent CJF, Bellec S, Pavillon G (2003) Surmortalité liéeàla canicule d’août 2003 en France. Bull Epidémiologique Hebdomadaire 45–46:1–5

    Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 996 pp

  • Katz RW and Brown BG (1992) Extreme events in a changing climate: variability is more important than averages. Clim Change 21:289–302

    Article  Google Scholar 

  • Kharin V, Zwiers F, Zhang X, Hegerl G (2007) Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J Clim 20:1419–1444

    Article  Google Scholar 

  • Knutti R, Allen M, Friedlingstein P, Gregory J, Hegerl G, Meehl G, Meinshausen M, Murphy J, Plattner G, Raper S et al (2008) A review of uncertainties in global temperature projections over the twenty-first century. J Clim 21:2651–2663

    Article  Google Scholar 

  • Koster R, Dirmeyer P, Hahmann A, Ijpelaar R, Tyahla L, Cox P, Suarez M (2002) Comparing the degree of land-atmosphere interaction in four atmospheric general circulation models. J Hydrometeor 3:363–375

    Google Scholar 

  • Kunkel K, Andsager K, Easterling D (1999) Long-term trends in extreme precipitation events over the conterminous United States and Canada. J Clim 12:2515–2527

    Article  Google Scholar 

  • Lawrence D, Thornton P, Oleson K, Bonan G (2007) The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: impacts on land-atmosphere interaction. J Hydrometeor 8:862–880

    Article  Google Scholar 

  • Levis S, Bonan G, Lawrence P (2007) Present-day springtime high-latitude surface albedo as a predictor of simulated climate sensitivity. Geophys Res Lett 34:L17703

    Article  Google Scholar 

  • Liu Y, Gupta H, Sorooshian S, Bastidas L, Shuttleworth W (2005) Constraining land surface and atmospheric parameters of a locally coupled model using observational data. J Hydrometeor 6:156–172

    Article  Google Scholar 

  • Meehl G, Covey C, Taylor K, Delworth T, Stouffer R, Latif M, McAvaney B, Mitchell J (2007) The WCRP CMIP3 multimodel dataset:A new era in climate change research. Bull Am Meteorol Soc 88:1383–1394

    Google Scholar 

  • Meehl G, Zwiers F, Evans J, Knutson T, Mearns L, Whetton P (2000) Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull Am Meteorol Soc 81:427–436

    Article  Google Scholar 

  • Meehl GA and Tebaldi C (2004) More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305:994–997

    Article  Google Scholar 

  • Murphy J, Sexton D, Barnett D, Jones G, Webb M, Collins M, Stainforth D (2004) Quantification of modelling uncertainties in a large ensemble of climate change simulations. Nature 430:768–772

    Article  Google Scholar 

  • Niu G, Yang Z, Dickinson R, Gulden L (2005) A simple TOPMODEL-based runoff parameterization (SIMTOP) for use in global climate models. J Geophys Res 110. doi:10.1029/2005JD006111

  • Niu G, Yang Z, Dickinson R, Gulden L, Su H (2007) Development of a simple groundwater model for use in climate models and evaluation with Gravity Recovery and Climate Experiment data. J Geophys Res 112. doi:10.1029/2006JD007522

  • Oleson K, Dai Y, Bonan G, Bosilovich M, Dickinson R, Dirmeyer P, Hoffman F, Houser P, Levis S, Niu G et al (2004) Technical description of the community land model (CLM). Tech Note NCAR/TN-461+ STR

  • Oleson K, Niu G, Yang Z, Lawrence D, Thornton P, Lawrence P, Stockli R, Dickinson R, Bonan G, Levis S et al (2008) Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res 113. doi:10.1029/2007JG000563

  • Piani C, Frame D, Stainforth D, Allen M (2005) Constraints on climate change from a multi-thousand member ensemble of simulations. Geophys Res Lett 32:23

    Article  Google Scholar 

  • Qu X and Hall A (2006) Assessing snow albedo feedback in simulated climate change. J Clim 19:2617–2630

    Article  Google Scholar 

  • Qu X and Hall A (2007) What controls the strength of snow-albedo feedback? J Clim 34:3971–3981

    Article  Google Scholar 

  • Räisänen J (2002) CO2-induced changes in interannual temperature and precipitation variability in 19 CMIP2 experiments. J Clim 15:2395–2411

    Article  Google Scholar 

  • Räisänen J and Joelsson R (2001) Changes in average and extreme precipitation in two regional climate model experiments. Tellus A 53:547–566

    Article  Google Scholar 

  • Sanderson BM (2010) A multi-model study of parametric uncertainty in predictions of climate response to rising greenhouse gas concentrations. J Clim. doi:10.1175/2010JCLI3498.1

  • Schär C, Vidale PL, Lüthi D, Frei C, Häberli C, Liniger MA, Appenzeller C (2004) The role of increasing temperature variability in European summer heatwaves. Nature 427:332–336. doi:10.1038/nature02300

    Article  Google Scholar 

  • Seneviratne SI, Koster RD, Guo Z, Dirmeyer PA, Kowalczyk E, Lawrence D, Liu P, Lu C-H, Mocko D, Oleson KW, Verseghy D (2006a) Soil moisture memory in AGCM simulations: analysis of global land-atmosphere coupling experiment (GLACE) data. J Hydrometeor 7:1090–1112

    Article  Google Scholar 

  • Seneviratne SI, Lüthi D, Litschi M, Schär C (2006b) Land-atmosphere coupling and climate change in Europe. Nature 443:205–209

    Article  Google Scholar 

  • Stahl K, Moore R, McKendry I (2006) Climatology of winter cold spells in relation to mountain pine beetle mortality in British Columbia, Canada. Clim Res 32:13–23

    Article  Google Scholar 

  • Stainforth D, Aina T, Christensen C, Collins M, Faull N, Frame D, Kettleborough J, Knight S, Martin A, Murphy J et al (2005) Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature 433:403–406

    Article  Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687

    Article  Google Scholar 

  • Stöckli R, Lawrence D, Niu G, Oleson K, Thornton P, Yang Z, Bonan G, Denning A, Running S (2008) Use of FLUXNET in the Community Land Model development. J Geophys Res 113. doi:10.1029/2007JG000562

  • Tebaldi C, Hayhoe K, Arblaster J, and Meehl G (2006) Going to the extremes. Clim Change 79:185–211

    Article  Google Scholar 

  • Tebaldi C and Knutti R (2007) The use of the multi-model ensemble in probabilistic climate projections. Philos Transact A Math Phys Eng Sci 365:2053

    Article  Google Scholar 

  • Thornton P and Zimmermann N (2007) An improved canopy integration scheme for a land surface model with prognostic canopy structure. J Clim 20:3902–3923

    Article  Google Scholar 

  • Vidale PL, Lüthi D, Wegmann R, Schär C (2007) Europea summer climate variability in a heterogeneous multi-model ensemble. Clim Change 81:209–232

    Article  Google Scholar 

  • Weisheimer A and Palmer T (2005) Changing frequency of occurrence of extreme seasonal temperatures under global warming. Geophys Res Lett 32:L20721

    Article  Google Scholar 

  • White M, Thornton P, Running S, Ramakrishna R (2000) Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interact 4:1

    Article  Google Scholar 

Download references

Acknowledgments

We thank Gerald Meehl, Keith Oleson and Reto Knutti for the fruitful discussion and the anonymous reviewers for their valuable comments on the manuscript. Erich Fischer was supported by the Swiss National Science Foundation. Support of this dataset is provided by the Office of Science, U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erich M. Fischer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (4389 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer, E.M., Lawrence, D.M. & Sanderson, B.M. Quantifying uncertainties in projections of extremes—a perturbed land surface parameter experiment. Clim Dyn 37, 1381–1398 (2011). https://doi.org/10.1007/s00382-010-0915-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0915-y

Keywords

Navigation