Skip to main content

Advertisement

Log in

Role of the upper ocean structure in the response of ENSO-like SST variability to global warming

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

The response of El Niño and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO2 concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Niño-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO-like SST variability to global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. The mixed-layer treatment used in the MRI model is a turbulent closure level 2 (Mellor and Yamada 1982). On the other hand, that in the GFDL model is a K-Profile Parameterization (KPP) scheme (Large et al. 1994).

  2. We further analyzed the changes in the upper ocean temperature before and after the mid 1970 s in the MRI and GFDL models using the 20th Century Climate Change Modeling (20C3M) simulation to year 2000 with anthropogenic and natural forcing. Both CGCMs show that temperature structures with sign alternating in the vertical, indicating that the vertical stratification increased after the mid 1970s.

References

  • An S-I, Jin Fei-Fei (2000) An eigen analysis of the interdecadal changes in the structure and frequency of ENSO mode. Geophys Res Lett 27:1573–2576

    Article  Google Scholar 

  • An S-I, Jin F-F (2004) Nonlinearity and asymmetry of ENSO. J Clim 17:2399–2412

    Article  Google Scholar 

  • An S-I, Wang B (2000) Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J Clim 13:2044–2055

    Article  Google Scholar 

  • An S-I, Ham Y-G, Kug J-S, Jin F-F, Kang I-S (2005) El Niño-La Niña asymmetry in the coupled model intercomparison project simulations. J Clim 18:2617–2627

    Article  Google Scholar 

  • An S-I, Kug J-S, Ham Y-G, Kang I-S (2008) Successive modulation of ENSO to the future greenhouse warming. J Clim 21:3–21

    Article  Google Scholar 

  • Annamalai H, Hamilton K, Sperber KR (2007) The south Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J Clim 20:1071–1092

    Article  Google Scholar 

  • Belmadani A, Dewitte B, An S-I (2010) ENSO feedbacks and associated variability timescales in a multi-model ensemble. J Clim (in press)

  • Cane MA, Sarachik ES (1976) Forced baroclinic ocean motions.1. Linear equatorial unbounded case. J Mar Res 34(4):629–665

    Google Scholar 

  • Capotondi A, Wittenberg A, Masina S (2006) Spatial and temporal structure of tropical Pacific interannual variability in 20th century coupled simulations. Ocean Model 15:274–298

    Article  Google Scholar 

  • Collins M (2000) Understanding uncertainties in the response of ENSO to greenhouse warming. Geophy Res Lett 27:3509–3513

    Article  Google Scholar 

  • Collins M, The CMIP modeling groups (2005) El Nino or La Nina-like climate change? Clim Dyn 24:89–104

    Article  Google Scholar 

  • Delworth et al (2006) GFDL’s CM2 global coupled models–Part I: Formulation and simulation characteristics. J Clim 19:643–674

    Article  Google Scholar 

  • Dewitte B (2000) Sensitivity of an intermediate coupled ocean–atmosphere model of the tropical Pacific to its oceanic vertical structure. J Clim 13:2363–2388

    Article  Google Scholar 

  • Dewitte B, Perigaud C (1996) El Nino-La Nina events simulated with cane and zebiak’s model and observed with satellite or in situ data. Part II: model forced with observations. J Clim 9:1188–1207

    Article  Google Scholar 

  • Dewitte B, Yeh SW, Moon BK, Cibot C, Terray L (2007a) Rectification of ENSO variability by interdecadal changes in the equatorial background mean state in a CGCM simulation. J Clim 20:2002–2021

    Article  Google Scholar 

  • Dewitte B, Cibot C, Périgaud C, An SI, Terray L (2007b) Interaction between near-annual and ENSO modes in a CGCM simulation: role of equatorial background mean state. J Clim 20:1035–1052

    Article  Google Scholar 

  • DiNezio PN, Clement AC, Vecchi GA, Soden BJ, Kirtman BP, Lee SK (2009) Climate response of the equatorial Pacific to global warming. J Clim 22:4873–4892

    Article  Google Scholar 

  • Fedorov AV, Philander SGH (2000) Is El Nino changing? Science 288:1997–2002

    Article  Google Scholar 

  • Guilyardi E (2006) El Nino-mean state-seasonal cycle interactions in a multi-model ensemble. Clim Dyn 6:329–348

    Article  Google Scholar 

  • Guilyardi E et al (2004) Representing El Nino in coupled ocean–atmosphere GCMs: the dominant role of the atmospheric component. J Clim 17:4623–4629 Coauthors

    Article  Google Scholar 

  • Guilyardi E, Wittenberg A, Fedorov AV, Collins M, Wang C, Capotondi A, van Oldenborgh GJ, Stockdale T (2009) Understanding El Nino in ocean–atmosphere general circulation models: progress and challenges. Bull Am Met Soc. doi:10.1175/2008BAMS2387.1

  • Halpern D, Chao Y, Ma CC, Mechoso CR (1995) Comparison of tropical Pacific temperature and current simulations with two vertical mixing schemes embedded in an ocean general circulation model and reference to observations. J Geophys Res 100(C2):1525–2522

    Article  Google Scholar 

  • Hirst AC (1986) Unstable and damped equatorial modes in simple coupled ocean–atmosphere models. J Atmos Sci 43:606–630

    Article  Google Scholar 

  • Imada U, Kimoto M (2006) Improvement of thermocline structure that affect ENSO performance in a coupled GCM. SOLA 2:164–167

    Article  Google Scholar 

  • Jin FF, Kug JS, An SI, Kang IS (2003) A near-annual coupled ocean–atmosphere mode in the equatorial Pacific Ocean. Geophy Res Lett 30:1080. doi:10.1029/2002GL015983

    Article  Google Scholar 

  • Kirtman BP (1997) Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J Clim 10:1690–1705

    Article  Google Scholar 

  • Kirtman BP, Fan Y, Schneider EK (2002) The COLA global coupled and anomaly coupled ocean–atmosphere GCM. J Clim (15): 2301–2320

  • Knutson TR, Manabe S (1995) Time-mean response over the tropical Pacific to increased CO2 in a coupled ocean–atmosphere model. J Clim 8:2181–2199

    Article  Google Scholar 

  • Knutson TR, Manabe S, Gu D (1997) Simulated ENSO in a global coupled ocean–atmosphere model: Multidecadal amplitude modulation and CO2 sensitivit. J Clim 10:138–161

    Article  Google Scholar 

  • Large WG, McWilliams JC, Doney SC (1994) Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Rev Geophys 32:363–403

    Article  Google Scholar 

  • Levitus S et al (1998) Introduction, vol 1. World Ocean Database, NOAA Atlas NESDIS 18, pp 346

  • Lin JL (2007) Interdecadal variability of ENSO in 21-IPCC AR4 coupled GCMs. Geophy Res Lett 34:L12702. doi:10.1029/2006GL028937

    Article  Google Scholar 

  • Liu Z, Vavrus S, He F, Wen N, Zhong Y (2005) Rethinking tropical ocean response to global warming: the enhanced equatorial warming. J Clim 18:4684–4700

    Article  Google Scholar 

  • Meehl GA (1990) Seasonal cycle forcing of El Nino-southern oscillation in a global coupled ocean–atmosphere GCM. J Clim 3:72–98

    Article  Google Scholar 

  • Meehl GA, Branstator G, Washington WM (1993) Tropical Pacific interannual variability and CO2 climate change. Part I: time-averaged differences. Clim Dyn 8:117–133

    Article  Google Scholar 

  • Meehl GA, Gent P, Arblaster JM, Otto-Bliesner B, Brady E, Craig A (2001) Factors that affect amplitude of El Nino in global coupled models. Clim Dyn 1:515–526

    Article  Google Scholar 

  • Meehl GA, Teng H, Branstator G (2006) Future changes of El Nino in two global coupled climate models. Clim Dyn 26:549–566. doi:10.1007/s00382-005-0098-0

    Article  Google Scholar 

  • Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multi-model dataset: a new era in climate change research. Bull Am Meteorol Soc, 1383–1394

  • Mellor GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys 20:851–875

    Article  Google Scholar 

  • Merryfield WJ (2006) Changes to ENSO under CO2 doubling in a multimodel ensemble. J Clim 19:4009–4027

    Article  Google Scholar 

  • Moon BK, Yeh SW, Dewitte B, Jhun JG, Kang IS, Kirtman BP (2004) Vertical structure variability in the equatorial Pacific before and after the Pacific climate shift of the 1970s. Geophy Res Lett 31 doi:10.1029/2003GL018829

  • Moon BK, Yeh SW, Dewitte B, Jhun JG, Kang IS (2007) Source of low frequency modulation of ENSO amplitude in a CGCM. Clim Dyn 29:101–111. doi:10.1007/s00382-006-0219-4

    Article  Google Scholar 

  • Stockdale TN, Busalacchi AJ, Harrison DE, Seager R (1998) Ocean modeling for ENSO. J Geophy Res 103:14325–14355

    Article  Google Scholar 

  • Timmermann A, Jin FF (2002) A nonlinear mechanism for decadal El Nino amplitude changes. Geophy Res Lett 29:1003. doi:10.1029/2001GL013369

    Article  Google Scholar 

  • Timmermann A, Oberhuber J, Bacher A, Esch M, Latif M, Roeckner E (1999) Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 393:694–697

    Google Scholar 

  • Trenberth KE, Hoar TJ (1997) El Nino and climate change. Geophy Res Lett 24:3057–3060

    Article  Google Scholar 

  • van Oldenborgh GJ, Philip SY, Collins M (2005) El Nino in a changing climate: a multi-model study. Ocean Sci 1:81–95

    Article  Google Scholar 

  • Vecchi GA, Clement A, Soden BJ (2008) Examining the tropical Pacific’s response to global warming EOS 89

  • Yang H, Zhang Q, Zhong Y, Vavrus S, Liu Z (2005) How does extratropical warming affect ENSO? Geophy Res Lett 32:L01702. doi:10.1029/2004GL021624

    Article  Google Scholar 

  • Yeh SW, Kirtman BP (2007) ENSO amplitude changes due to climate change projections in different coupled models. J Clim 20:203–217

    Article  Google Scholar 

  • Yeh SW, Park YG, Kirtman BP (2006) ENSO amplitude changes in climate change commitment to atmospheric CO2 doubling. Geophy Res Lett 33:L13711. doi:10.1029/2005GL025653

    Article  Google Scholar 

  • Yeh SW, Kug JS, Dewitte B, Kwon MH, Kirtman BP, Jin FF (2009) El Niño in a changing climate. Nature 461:511–514

    Article  Google Scholar 

  • Yukimoto et al (2001) The new Meteorological Research Institute coupled GCM (MRI-CGCM2)—Model climate and variability—Pap. Meteor Geophy 51:47–88

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model El Nino southern oscillation. Mon Wea Rev 115:2262–2278

    Article  Google Scholar 

  • Zelle H, van Oldenborgh GJ, Burgers G, Dijkstra H (2005) El Nino and Greenhouse warming: results from ensemble simulations with the NCAR CCSM. J Clim 18:4669–4683

    Article  Google Scholar 

  • Zhang RH, DeWitt DG (2006) Response of tropical Pacific interannual variability to decadal entrainment temperature change in a hybrid coupled model. Geophy Res Lett 33:L08611. doi:10.1029/2005GL025286

    Article  Google Scholar 

  • Zhang M, Song H (2006) Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophy Res Lett 33:L12701. doi:10.1029/2006GL025942

    Article  Google Scholar 

  • Zhang RH, Busalacchi AJ, Xue Y (2007) Decadal change in the relationship between the oceanic entrainment temperature and thermocline depth in the far western tropical Pacific. Geophy Res Lett 34:L23612. doi:10.1029/2007GL032119

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the Korea Meteorological Administration Research and Development Program under Grant RACS_2010-2006. B. Dewitte benefited from support of the CNRS (Centre National de la Recherche Scientifique) through a STAR (Science and Technology Amicable Research) program and of the ANR (Agence Nationale de la Recherche) through the PCCC (Peru Chile Climate Change) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Wook Yeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yeh, SW., Dewitte, B., Yim, B.Y. et al. Role of the upper ocean structure in the response of ENSO-like SST variability to global warming. Clim Dyn 35, 355–369 (2010). https://doi.org/10.1007/s00382-010-0849-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-010-0849-4

Keywords

Navigation