Skip to main content

Advertisement

Log in

New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

In this study, a new method is developed to generate optimal perturbations in ensemble climate prediction. In this method, the optimal perturbation in initial conditions is the 1st leading singular vector, calculated from an empirical linear operator based on a historical model integration. To verify this concept, this method is applied to a hybrid coupled model. It is demonstrated that the 1st leading singular vector from the empirical linear operator, to a large extent, represents the fast-growing mode in the nonlinear integration. Therefore, the forecast skill with the optimal perturbations is improved over most lead times and regions. In particular, the improvement of the forecast skill is significant where the signal-to-noise ratio is small, indicating that the optimal perturbation method is effective when the initial uncertainty is large. Therefore, the new optimal perturbation method has the potential to improve current seasonal prediction with state-of-the-art coupled GCMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The STN ration can be expressed by correlation coefficient (r) as follows: \( \text{STN} = r^{2} /(1 - r^{2} ). \)

References

  • Blumenthal MB (1991) Predictability of a coupled ocean–atmosphere model. J Clim 4:766–784

    Article  Google Scholar 

  • Buizza R, Petroliagis T, Palmer TN, Hamrud M, Hollingsworth A, Simmons A, Wedi N (1998) Impact of model resolution and ensemble size on the performance of an ensemble prediction system. Quart J R Meteor Soc 124:1935–1960

    Article  Google Scholar 

  • Cai M, Kalnay E, Toth Z (2003) Bred vectors of the Zebiak-Cane model and their potential application to ENSO predictions. J Clim 16:40–56

    Article  Google Scholar 

  • Chen Y-Q, Battisti DS, Palmer TN, Barsugli J, Sarachik ES (1997) A study of the predictability of Tropical Pacific SST in a coupled atmosphere–ocean model using singular vector analysis: the role of the annual cycle and the ENSO cycle. Mon Weather Rev 125:831–845

    Article  Google Scholar 

  • Corazza M, Kalnay E, Patil DJ, Yang S-C, Morss R, Cai M, Szunyogh I, Hunt BR, Yorke JA (2003) Use of the breeding technique to estimate the structure of the analysis “errors of the day”. Nonlinear Process Geophys 10:1–11

    Article  Google Scholar 

  • Evensen G (1994) Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J Geophys Res 99:10143–10162

    Google Scholar 

  • Evensen G (2003) The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dyn 53:343–367

    Article  Google Scholar 

  • Fan Y, Allen MR, Anderson DLT, Balmaseda MA (2000) How predictability depends on the nature of uncertainty in initial conditions in a coupled model of ENSO. J Clim 13:3298–3313

    Article  Google Scholar 

  • Farrell BF (1989) Optimal excitation of baroclinic waves. J Atmos Sci 46:1193–1206

    Article  Google Scholar 

  • Ham Y-G, Kug J-S, Kang I-S (2009) Optimal initial perturbations for El Nino ensemble prediction with Ensemble Kalman Filter. Clim Dyn. doi:10.1007/s00382-009-0582

  • Jin F-F (1996) Tropical ocean–atmosphere interaction, the Pacific Cold Tongue, and the El Niño-southern oscillation. Science 274:76–78

    Article  Google Scholar 

  • Jin F-F (1997a) An Equatorial Ocean recharge paradigm for ENSO. Part I: conceptual model. J Atmos Sci 54:811–829

    Article  Google Scholar 

  • Jin F-F (1997b) An Equatorial Ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J Atmos Sci 54:830–847

    Article  Google Scholar 

  • Kalnay E, Corazza M, Cai M (2002) Are bred vectors the same as lyapunov vectors? AMS symposium on observations, data assimilation and probabilistic prediction, 13–17 January 2002, Orlando, Florida, pp 173–177

  • Kang I-S, Kug J–S (2000) An El-Nino prediction system using an intermediate ocean and a statistical atmosphere. Geophys Res Lett 15:1167–1170

    Article  Google Scholar 

  • Kang I-S, Shukla J (2006) Dynamic seasonal prediction and predictability of the monsoon, The Asian Monsoon, Springer/Praxis, Chapter 15

  • Kleeman R, Tang Y, Moore AM (2003) The calculation of climatically relevant singular vectors in the presense of weather noise as applied to the ENSO problem. J Atmos Sci 60:2856–2868

    Article  Google Scholar 

  • Kug J-S, Kang I-S, Choi D-H (2008) Seasonal climate predictability with tier-one and tier-two prediction systems. Clim Dyn 31. doi:10.1007/s00382-007-0264-7

  • Kumar A, Hoerling M (2000) Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction. Bull Am Meteorol Soc 81:255–264

    Article  Google Scholar 

  • Leeuwenburgh O (2007) Validation of an EnKF system for OGCM initialization assimilating temperature, salinity, and surface height measurements. Mon Weather Rev 126:125–139

    Article  Google Scholar 

  • Lorenz EN (1965) A study of the predictability of a 28-variable atmospheric model. Tellus 17:321–333

    Article  Google Scholar 

  • Molteni F (2003) Atmospheric simulations using a GCM with simplified physical parameterizations. I: model climatology and variability in multi-decadal experiments. Clim Dyn 20:175–191

    Google Scholar 

  • Molteni F, Palmer TN (1993) Predictability and finite time instability of the northern winter circulation. Quart J R Meteorol Soc 119:269–298

    Article  Google Scholar 

  • Molteni F, Buizza R, Palmer TN, Petroliagis T (1996) The ECMWF ensemble prediction system: methodology and validation. Quart J R Meteorol Soc 122:73–119

    Article  Google Scholar 

  • Moore AM, Kleeman R (1996) The dynamics of error growth and predictability in a coupled model of ENSO. Quart J R Meteorol Soc 122:1405–1446

    Article  Google Scholar 

  • Moore AM, Kleeman R (1997a) The singular vectors of a coupled ocean–atmosphere model of ENSO I: thermodynamics, energetic and error growth. Quart J R Meteorol Soc 123:953–981

    Article  Google Scholar 

  • Moore AM, Kleeman R (1997b) The singular vectors of a coupled ocean–atmosphere model of ENSO II: thermodynamics, energetic and error growth. Quart J R Meteorol Soc 123:953–981

    Article  Google Scholar 

  • Moore AM, Kleeman R (1998) Skill assessment for ENSO using ensemble prediction. Quart J R Meteorol Soc 124:557–584

    Article  Google Scholar 

  • Moore AM, Kleeman R (2001) The differences between the optimal perturbations of coupled models of ENSO. J Clim 14:138–163

    Article  Google Scholar 

  • Mureau R, Molteni F, Palmer TN (1993) Ensemble prediction using dynamically conditioned perturbations. Quart J R Meteorol Soc 119:299–323

    Article  Google Scholar 

  • Palmer TN, Buizza R, Molteni E, Chen Y-Q, Corti S (1994) Singular vectors and the predictability of weather and climate. Philos Trans R Soc Lond 348:459–475

    Article  Google Scholar 

  • Palmer TN et al (2004) Development of a European Multimodel Ensemble System for seasonal-to-interannual prediction (DEMETER). Bull Am Meteorol Soc 85:853–872

    Article  Google Scholar 

  • Penland C (1996) A stochastic model of IndoPacific sea surface temperature anomalies. Phys D 96:534–558

    Article  Google Scholar 

  • Penland C, Matrosova L (1998) Prediction of tropical Atlantic Sea surface temperatures using linear inverse modeling. J Clim 11:483–496

    Article  Google Scholar 

  • Penland C, Matrosova L (2001) Expected and actual errors of linear inverse model forecasts. Mon Weather Rev 129:1740–1745

    Article  Google Scholar 

  • Penland C, Sardeshmukh PD (1995) The optimal growth of tropical sea surface temperature anomalies. J Clim 8:1999–2024

    Article  Google Scholar 

  • Penland C, Matrosova L, Weickmann K, Smith C (2000) Forecast of tropical SSTs using linear inverse modeling (LIM). Experimental Long-Lead Forecast Bulletin, Center for Ocean-Land–Atmosphere Studies 9:34–37

  • Rowell DP (1998) Accessing potential seasonal predictability with an ensemble of multidecadal GCM simulations. J Clim 11:109–120

    Article  Google Scholar 

  • Saha S et al (2006) The NCEP Climate Forecast System. J Clim 19:3483–3517

    Article  Google Scholar 

  • Szunyogh I, Kalnay E, Toth Z (1997) A comparison of Lyapunov and optimal vectors in a low-resolution GCM. Tellus A 49:200–227

    Article  Google Scholar 

  • Tang Y, Kleeman R, Miller S (2006) ENSO predictability of a fully coupled GCM model using singular vector analysis. J Clim 19:3361–3377

    Article  Google Scholar 

  • Toth Z, Kalnay E (1993) Ensemble forecasting and NMC: the generation of perturbations. Bull Am Meteorol Soc 74:2317–2330

    Article  Google Scholar 

  • Toth Z, Kalnay E (1997) Ensemble forecasting at NCEP and the breeding method. Mon Weather Rev 125:3297–3318

    Article  Google Scholar 

  • Tziperman E, Zanna L, Penland C (2008) Nonnormal thermohaline circulation dynamics in a coupled ocean–atmosphere GCM. J Phys Oceanogr 38:588–604

    Article  Google Scholar 

  • Vialard J, Vitart F, Balmaseda MA, Stockdale TN, Anderson DL (2003) An ensemble generation method for seasonal forecasting with an ocean–atmosphere coupled model. ECMWF Tech Memo 417:20

    Google Scholar 

  • Wang B, Lee J-Y, Kang I-S, Shukla J, Kug J-S, Kumar A, Schemm J, Luo J-J, Yamagata T, Park C-K (2008) How accurately do coupled models predict the Asian–Australian Monsoon interannual variability? Clim Dyn 30. doi:10.1007/s00382-007-0310-5

  • Xue Y, Cane MA, Zebiak SE, Blumenthal B (1994) On the prediction of ENSO: a study with a low-order Markov model. Tellus 46A:512–528

    Google Scholar 

  • Xue Y, Cane MA, Zebiak SE (1997a) Predictability of a coupled model of ENSO using singular vector analysis. PartI: optimal growth in seasonal background and ENSO cycles. Mon Weather Rev 125:2043–2056

    Article  Google Scholar 

  • Xue Y, Cane MA, Zebiak SE (1997b) Predictability of a coupled model of ENSO using singular vector analysis. PartII: optimal growth and forecast skill. Mon Weather Rev 125:2057–2073

    Article  Google Scholar 

  • Yang S-C, Cai M, Kalnay E, Rienecker M, Yuan G, Toth Z (2006) ENSO bred vectors in coupled ocean–atmosphere general circulation models. J Clim 19:1422–1436

    Article  Google Scholar 

  • Yang SC, Kalnay E, Cai M, Rienecker MM (2008) Bred vectors and tropical pacific forecast errors in the NASA coupled general circulation model. Mon Weather Rev 136:1305–1326

    Article  Google Scholar 

  • Yoo JH, Kang I-S (2005) Theoretical examination of a multi-model composite for seasonal prediction. Geophys Res Lett 32:L18707. doi:10.1029/2005GL023513

    Article  Google Scholar 

  • Zebiak SE, Cane MA (1987) A model for El Nino–southern oscillation. Mon Weather Rev 115:2262–2278

    Article  Google Scholar 

Download references

Acknowledgments

This work was mostly done when J.-S. Kug visited CCSR during the summer in 2007. J.-S. Kug is partly supported by KORDI(PE98425, PP00720, PM55290). F.-F. Jin was partly supported by NSF grants ATM-0652145 and ATM-0650552 and NOAA grants GC01-229. M. Kimoto was supported by Innovative Program of Climate Change Projection for the 21st Century of the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Seong Kug.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kug, JS., Ham, YG., Kimoto, M. et al. New approach for optimal perturbation method in ensemble climate prediction with empirical singular vector. Clim Dyn 35, 331–340 (2010). https://doi.org/10.1007/s00382-009-0664-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-009-0664-y

Keywords

Navigation