Skip to main content

Advertisement

Log in

Environmental enrichment reduces brain damage in hydrocephalic immature rats

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

We investigate the effects of environmental enrichment (EE) on morphological alterations in different brain structures of pup rats submitted to hydrocephalus condition.

Methods

Hydrocephalus was induced in 7-day-old pup rats by injection of 20% kaolin into the cisterna magna. Ventricular dilatation and magnetization transfer to analyze myelin were assessed by magnetic resonance. Hydrocephalic and control rats exposed to EE (n = 10 per group) were housed in cages with a tunnel, ramp, and colored plastic balls that would emit sound when touched. The walls of the housing were decorated with colored adhesive tape. Moreover, tactile and auditory stimulation was performed daily throughout the experiment. Hydrocephalic and control rats not exposed to EE (n = 10 per group) were allocated singly in standard cages. All animals were weighed daily and exposed to open-field conditions every 2 days until the end of the experiment when they were sacrificed and the brains removed for histology and immunohistochemistry. Solochrome cyanine staining was performed to assess the thickness of the corpus callosum. The glial fibrillary acidic protein method was used to evaluate reactive astrocytes, and the Ki67 method to assess cellular proliferation in the subventricular zone.

Results

The hydrocephalic animals exposed to EE showed better performance in Open Field tests (p < 0.05), while presenting lower weight gain. In addition, these animals showed better myelination as revealed by magnetization transfer (p < 0.05). Finally, the EE group showed a reduction in reactive astrocytes by means of glial fibrillary acidic protein immunostaining and preservation of the proliferation potential of progenitor cells.

Conclusion

The results suggest that EE can protect the developing brain against damaging effects caused by hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Del Bigio MR, Slobodian I, Schellenberg AE, Buist RJ, Kemp-Buors TL (2011) Magnetic resonance imaging indicators of blood-brain barrier and brain water changes in young rats with kaolin-induced hydrocephalus. Fluids Barriers CNS 11:8–22

    Google Scholar 

  2. Catalão CH, Correa DA, Saito ST, Lopes LD (2014) Camellia sinensis neuroprotective role in experimentally induced hydrocephalus in Wistar rats. Childs Nerv Syst 30:591–597

    Article  PubMed  Google Scholar 

  3. Luciano MG, Skarupa DJ, Booth AM, Wood AS, Brant CL, Gdowsk MJ (2001) Cerebrovascular adaptation in chronic hydrocephalus. J Cereb Blood Flow Metab 21:285–294

    Article  CAS  PubMed  Google Scholar 

  4. Chumas PD, Drake JM, Del Bigio MR, Da Silva M, Tuor UI (1994) Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. J Neurosurg 80:491–501

    Article  CAS  PubMed  Google Scholar 

  5. Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109–117

    Article  CAS  PubMed  Google Scholar 

  6. Harris NG, McAllister JP 2nd, Conaughty JM, Jones HC (1996) The effect of inherited hydrocephalus and shunt treatment on cortical pyramidal cell dendrites in the infant H-Tx rat. Exp Neurol 141:269–279

    Article  CAS  PubMed  Google Scholar 

  7. Del Bigio MR (2000) Calcium-mediated proteolytic damage in white matter of hydrocephalic rats? J Neuropathol Exp Neurol 59:946–954

    Article  CAS  PubMed  Google Scholar 

  8. Vinchon M, Rekate H, Kulkarni AV (2012) Pediatric hydrocephalus outcomes: a review. Fluids Barriers CNS 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  9. Williams MT, Braun AA, Amos-Kroohs RM, JP MA 2nd, Lindquist DM, Mangano FT, Vorhees CV, Yuan W (2014) Kaolin-induced ventriculomegaly at weaning produces long-term learning, memory, and motor deficits in rats. Int J Dev Neurosci 35:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jones HC, Rivera KM, Harris NG (1995) Learning deficits in congenitally hydrocephalic rats and prevention by early shunt treatment. Childs Nerv Syst 11:655–660

    Article  CAS  PubMed  Google Scholar 

  11. Spittle A, Orton J, Anderson P, Boyd R, Doyle LW (2012) Early developmental intervention programmes post-hospital discharge to prevent motor and cognitive impairments in preterm infants. Cochrane Database Syst Rev. doi:10.1002/14651858

    PubMed  Google Scholar 

  12. Blauw-Hospers CH, Hadders-Algra M (2005) A systematic review of the effects of early intervention on motor development. Dev Med Child Neurol 47:421–432

    Article  PubMed  Google Scholar 

  13. Blauw-Hospers CH, de Graaf-Peters VB, Dirks T, Bos AF, Hadders-Algra M (2007) Does early intervention in infants at high risk for a developmental motor disorder improve motor and cognitive development? Neurosci Biobehav Rev 3:1201–1212

    Article  Google Scholar 

  14. Orton J, Spittle A, Doyle L, Anderson P, Boyd R (2009) Do early intervention programmes improve cognitive and motor outcomes for preterm infants after discharge? A systematic review. Dev Med Child Neurol 5:851–859

    Article  Google Scholar 

  15. Guzzetta A, Baldini S, Bancale A, Baroncelli L, Ciucci F, Ghirri P, Putignano E, Sale A, Viegi A, Berardi N, Boldrini A, Cioni G, Maffei L (2009) Massage accelerates brain development and the maturation of visual function. J Neurosci 29:6042–6051

    Article  CAS  PubMed  Google Scholar 

  16. Leib SA, Benfield DG, Guidubaldi J (1980) Effects of early intervention and stimulation on the preterm infant. Pediatrics 66:83–90

    CAS  PubMed  Google Scholar 

  17. Blázquez G, Cañete T, Tobeña A, Giménez-Llort L, Fernández-Teruel A (2014) Cognitive and emotional profiles of aged Alzheimer’s disease (3×TgAD) mice: effects of environmental enrichment sexual dimorphism. Behav Brain Res 268:185–201

    Article  PubMed  Google Scholar 

  18. Barak B, Shvarts-Serebro I, Modai S, Gilam A, Okun E, Michaelson DM, Mattson MP, Shomron N, Ashery U (2013) Opposing actions of environmental enrichment and Alzheimer’s disease on the expression of hippocampal microRNAs in mouse models. Transl Psychiatry 10:e304

    Article  Google Scholar 

  19. Mazarakis NK, Mo C, Renoir T, van Dellen A, Deacon R, Blakemore C, Hannan AJ (2014) ‘Super-enrichment’ reveals dose-dependent therapeutic effects of environmental stimulation in a transgenic mouse model of Huntington's disease. J Huntingtons Dis 3:299–309

    CAS  PubMed  Google Scholar 

  20. Alwis DS, Rajan R (2014) Environmental enrichment and the sensory brain: the role of enrichment in remediating brain injury. Front Syst Neurosci 2:156

    Google Scholar 

  21. Marques MR, Stigger F, Segabinazi E, Augustin OA, Barbosa S, Piazza FV, Achaval M, Marcuzzo S (2014) Beneficial effects of early environmental enrichment on motor development and spinal cord plasticity in a rat model of cerebral palsy. Behav Brain Res 263:149–157

    Article  PubMed  Google Scholar 

  22. Greifzu F, Pielecka-Fortuna J, Kalogeraki E, Krempler K, Favaro PD, Schlüter OM, Löwel S (2014) Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc Natl Acad Sci U S A 111:1150–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Praag H, Kempermann G, Gage FH (2000) Neural consequences of environmental enrichment. Nat Rev Neurosci 1:191–198

    Article  PubMed  Google Scholar 

  24. Sale A, Berardi N, Maffei L (2009) Enrich the environment to empower the brain. Trends Neurosci 32:233–239

    Article  CAS  PubMed  Google Scholar 

  25. Liu N, He S, Yu X (2012) Early natural stimulation through environmental enrichment accelerates neuronal development in the mouse dentate gyrus. PLoS One 7:e30803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Sale A, Maffei L (2010) Nurturing brain plasticity: impact of environmental enrichment. Cell Death Differ 17:1092–1103

    Article  CAS  PubMed  Google Scholar 

  27. Redila VA, Christie BR (2006) Exercise induced changes in dendritic structure and complexity in the adult hippocampal dentate gyrus. Neuroscience 137:1299–1307

    Article  CAS  PubMed  Google Scholar 

  28. Eadie BD, Redila VA, Christie BR (2005) Voluntary exercises alters the cytoarchitecture of the adult dentate gyrus by increasing cellular proliferation, dendritic complexity, and spine density. J Comp Neurol 486:39–47

    Article  PubMed  Google Scholar 

  29. Rampon C, Jiang CH, Dong H, Tang YP, Lockhart DJ, Schultz PG, Tsien JZ, Hu Y (2000) Effects of environmental enrichment on gene expression in the brain. Proc Natl Acad Sci U S A 97:12880–12884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Simpson J, Kelly JP (2011) The impact of environmental enrichment in laboratory rats—behavioural and neurochemical aspects. Behav Brain Res 222:246–264

    Article  CAS  PubMed  Google Scholar 

  31. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709

    Article  CAS  PubMed  Google Scholar 

  32. Bruel-Jungerman E, Laroche S, Rampon C (2005) New neurons in the dentate gyrus are involved in the expression of enhanced long-term memory following environmental enrichment. Eur J Neurosci 21:513–521

    Article  PubMed  Google Scholar 

  33. da Lopes L S, Slobodian I, Del Bigio MR (2009) Characterization of juvenile and young adult mice following induction of hydrocephalus with kaolin. Exp Neurol 219:187–196

    Article  Google Scholar 

  34. Rocha Catalão CH, Leme Correa DA, Bernardino Garcia CA, Dos Santos AC, Salmon G, Alves Rocha MJ, da Silva LL (2014) Pre- and postshunting magnetization transfer ratios are in accordance with neurological and behavioral changes in hydrocephalic immature rats. Dev Neurosci 36:520–531

    Article  PubMed  Google Scholar 

  35. Mabe H, Suzuki K, Nagai H (1990) Cerebral blood flow after ventriculoperitoneal shunt in children with hydrocephalus. Childs Nerv Syst 6:388–391

    Article  CAS  PubMed  Google Scholar 

  36. McLone DG (1994) Consensus: modeling of hydrocephalus. Childs Nerv Syst 10:24–28

    Article  CAS  PubMed  Google Scholar 

  37. Drake JM, Kestle JR, Milner R, Cinalli G, Boop F, Piatt J Jr, Haines S, Schiff SJ, Cochrane DD, Steinbok P, MacNeil N (1998) Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery 43:294–303

    Article  CAS  PubMed  Google Scholar 

  38. Stein SC, Guo W (2008) Have we made progress in preventing shunt failure? A critical analysis. J Neurosurg Pediatr 1:40–47

    Article  PubMed  Google Scholar 

  39. Fletcher JM, Bohan TP, Brandt ME, Brookshire BL, Beaver SR, Francis DJ, Davidson KC, Thompson NM, Miner ME (1992) Cerebral white matter and cognition in hydrocephalic children. Arch Neurol 49:818–824

    Article  CAS  PubMed  Google Scholar 

  40. Del Bigio MR, Crook CR, Buist R (1997) Magnetic resonance imaging and behavioral analysis of immature rats with kaolin-induced hydrocephalus: pre- and postshunting observations. Exp Neurol 148:256–264

    Article  CAS  PubMed  Google Scholar 

  41. Olopade FE, Shokunbi MT, Siren AL (2012) The relationship between ventricular dilatation, neuropathological and neurobehavioural changes in hydrocephalic rats. Fluids Barriers of the CNS 9:19

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zaias J, Queeney TJ, Kelley JB, Zakharova ES, Izenwasser S (2008) Social and physical environmental enrichment differentially affect growth and activity of preadolescent and adolescent male rats. J Am Assoc Lab Anim Sci 47:30–34

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Konkle AT, Kentner AC, Baker SL, Stewart A, Bielajew C (2010) Environmental-enrichment-related variations in behavioral, biochemical, and physiologic responses of Sprague-Dawley and Long Evans rats. J Am Assoc Lab Anim Sci 49:427–436

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mora F (2013) Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci 15:45–52

    PubMed  PubMed Central  Google Scholar 

  45. Reynolds S, Lane SJ, Richards L (2010) Using animal models of enriched environments to inform research on sensory integration intervention for the rehabilitation of neurodevelopmental disorders. J Neurodev Disord 2:120–132

    Article  PubMed  PubMed Central  Google Scholar 

  46. Elberger AJ (1982) The functional role of the corpus callosum in the developing visual system: a review. Prog Neurobiol 18:15–79

    Article  CAS  PubMed  Google Scholar 

  47. Lopes LS, Machado HR, Lachat J-J (2003) Study of callosum in experimental hydrocephalic Wistar rats. Acta Cir Bras 18:10–13

    Article  Google Scholar 

  48. Gozzi M, Nielson DM, Lenroot RK, Ostuni JL, Luckenbaugh DA, Thurm AE, Giedd JN, Swedo SE (2012) A magnetization transfer imaging study of corpus callosum myelination in young children with autism. Biol Psychiatry 72:215–220

    Article  PubMed  PubMed Central  Google Scholar 

  49. Newbould RD, Nicholas R, Thomas CL, Quest R, Lee JS, Honeyfield L, Colasanti A, Malik O, Mattoscio M, Matthews PM, Sormani MP, Waldman AD, Muraro PA (2014) Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. Neuroimage Clin 4:641–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zaaraoui W, Deloire M, Merle M, Girard C, Raffard G, Biran M, Inglese M, Petry KG, Gonen O, Brochet B, Franconi JM, Dousset V (2008) Monitoring demyelination and remyelination by magnetization transfer imaging in the mouse brain at 9.4 T. MAGMA 21:357–362

    Article  PubMed  PubMed Central  Google Scholar 

  51. Zhao YY, Shi XY, Qiu X, Lu W, Yang S, Li C, Chen L, Zhang L, Cheng GH, Tang Y (2012) Enriched environment increases the myelinated nerve fibers of aged rat corpus callosum. Anat Rec (Hoboken) 295:999–1005

    Article  Google Scholar 

  52. Qiu X, Huang CX, Lu W, Yang S, Li C, Shi XY, Chen L, Xiu Y, Yang JQ, Tang Y (2012) Effects of a 4 month enriched environment on the hippocampus and the myelinated fibers in the hippocampus of middle-aged rats. Brain Res 1465:26–33

    Article  CAS  PubMed  Google Scholar 

  53. Reinard K, Basheer A, Phillips S, Snyder A, Agarwal A, Jafari-Khouzani K, Soltanian-Zadeh H, Schultz L, Aho T, Schwalb JM (2015) Simple and reproducible linear measurements to determine ventricular enlargement in adults. Surg Neurol Int 6:59

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ragan DK, Cerqua J, Nash T, McKinstry RC, Shimony JS, Jones BV, Mangano FT, Holland SK, Yuan W, Limbrick DD, (2015) The accuracy of linear indices of ventricular volume in pediatric hydrocephalus: technical note. J Neurosurg Pediatr 15(6):547–551

  55. Khan OH, Enno TL, Del Bigio MR (2006) Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp Neurol 200:311–320

    Article  CAS  PubMed  Google Scholar 

  56. Miller JM, McAllister JP 2nd (2007) Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Res 4:5

    Article  PubMed  PubMed Central  Google Scholar 

  57. Fitch MT, Silver J (2008) CNS injury, glial scars, and inflammation: inhibitory extracellular matrices and regeneration failure. Exp Neurol 209:294–301

    Article  CAS  PubMed  Google Scholar 

  58. Glees P, Hasan M (1990) Ultrastructure of human cerebral macroglia and microglia: maturing and hydrocephalic frontal cortex. Neurosurg Rev 13:231–242

    Article  CAS  PubMed  Google Scholar 

  59. Mangano FT, McAllister JP, Jones HC, Johnson MJ, Kriebel RM (1998) The microglial response to progressive hydrocephalus in a model of inherited aqueductal stenosis. Neurol Res 20:697–704

    Article  CAS  PubMed  Google Scholar 

  60. Ulfig N, Bohl J, Neudörfer F, Rezaie P (2004) Brain macrophages and microglia in human fetal hydrocephalus. Brain and Development 26:307–315

    Article  PubMed  Google Scholar 

  61. Rhodes KE, Moon LD, Fawcett JW (2003) Inhibiting cell proliferation during formation of the glial scar: effects on axon regeneration in the CNS. Neuroscience 120:41–56

    Article  CAS  PubMed  Google Scholar 

  62. Lanosa XA, Santacroce I, Colombo JA (2011) Exposure to environmental enrichment prior to a cerebral cortex stab wound attenuates the postlesional astroglia response in rats. Neuron Glia Biol 7:163–175

    Article  PubMed  Google Scholar 

  63. Beauquis J, Pavia P, Pomilio C, Vinuesa A, Podlutskaya N, Galvan V, Saravia F (2013) Environmental enrichment prevents astroglial pathological changes in the hippocampus of APP transgenic mice, model of Alzheimer's disease. Exp Neurol 239:28–37

    Article  CAS  PubMed  Google Scholar 

  64. Newman SF, Sultana R, Perluigi M, Coccia R, Cai J, Pierce WM, Klein JB, Turner DM, Butterfield DA (2007) An increase in S-glutathionylated proteins in the Alzheimer's disease inferior parietal lobule, a proteomics approach. J Neurosci Res 85:1506–1514

    Article  CAS  PubMed  Google Scholar 

  65. Sampedro-Piquero P, De Bartolo P, Petrosini L, Zancada-Menendez C, Arias JL, Begega A (2014) Astrocytic plasticity as a possible mediator of the cognitive improvements after environmental enrichment in aged rats. Neurobiol Learning Mem 114:16–25

    Article  CAS  Google Scholar 

  66. Di Curzio DL, Buist RJ, Del Bigio MR (2013) Reduced subventricular zone proliferation and white matter damage in juvenile ferrets with kaolin-induced hydrocephalus. Exp Neurol 248:112–128

    Article  PubMed  Google Scholar 

  67. Komitova M, Mattsson B, Johansson BB, Eriksson PS (2005) Enriched environment increases neural stem/progenitor cell proliferation and neurogenesis in the subventricular zone of stroke-lesioned adult rats. Stroke 36:1278–1282

    Article  PubMed  Google Scholar 

  68. Salmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM (2012) Environmental enrichment increases the GFAP+ stem cell pool and reverses hypoxia-induced cognitive deficits in juvenile mice. J Neurosci 32:8930–8939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dranovsky A, Picchini AM, Moadel T, Sisti AC, Yamada A, Kimura S, Leonardo ED, Hen R (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wagner AK, Kline AE, Sokoloski J, Zafonte RD, Capulong E, Dixon CE (2002) Intervention with environmental enrichment after experimental brain trauma enhances cognitive recovery in male but not female rats. Neurosci Lett 334:165–168

    Article  CAS  PubMed  Google Scholar 

  71. Gaulke LJ, Horner PJ, Fink AJ, McNamara CL, Hicks RR (2005) Environmental enrichment increases progenitor cell survival in the dentate gyrus following lateral fluid percussion injury. Mol Brain Res 141:138–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hilderman CG, Harris SR (2014) Early intervention post-hospital discharge for infants born preterm. Phys Ther 94:1211–1219

    Article  PubMed  Google Scholar 

  73. Schuch CP, Diaz R, Deckmann I, Rojas JJ, Deniz BF, Pereira LO (2016) Early environmental enrichment affects neurobehavioral development and prevents brain damage in rats submitted to neonatal hypoxia-ischemia. Neurosci Lett 617:101–107

    Article  CAS  PubMed  Google Scholar 

  74. Maegele M, Lippert-Gruener M, Ester-Bode T, Garbe J, Bouillon B, Neugebauer E, Klug N, Lefering R, Neiss WF, Angelov DN (2005) Multimodal early onset stimulation combined with enriched environment is associated with reduced CNS lesion volume and enhanced reversal of neuromotor dysfunction after traumatic brain injury in rats. Eur J Neurosci 21:2406–2418

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Antonio Renato Meirelles e Silva for his assistance with microscope photographs and Klaus Hartfelder for his assistance with English language. Financial support from Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo (FAEPA), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza da Silva Lopes.

Ethics declarations

All procedures involving animals were in accordance with guidelines established by the Colégio Brasileiro de Experimentação Animal (COBEA) and were approved by the Comissão de Ética em Experimentação Animal (CETEA), Faculdade de Medicina de Ribeirão Preto—Universidade de São Paulo (USP).

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Research was performed at the Laboratório de Neuropatologia do Desenvolvimento e Neurocirurgia Pediátrica, Departamento de Cirurgia e Anatomia, Faculdade de Medicina de Ribeirão Preto (FMRP), Universidade de São Paulo (USP), São Paulo, Brazil.

Research was supported by Fundação de Apoio ao Ensino, Pesquisa e Assistência (FAEPA) of Faculty of Medicine of Ribeirão Preto (FMRP), University of São Paulo (USP), São Paulo, Brazil.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalão, C.H.R., Shimizu, G.Y., Tida, J.A. et al. Environmental enrichment reduces brain damage in hydrocephalic immature rats. Childs Nerv Syst 33, 921–931 (2017). https://doi.org/10.1007/s00381-017-3403-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-017-3403-4

Keywords

Navigation