Skip to main content

Advertisement

Log in

Isolation of tumor spheres and mesenchymal stem-like cells from a single primitive neuroectodermal tumor specimen

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

It has been reported that cancer stem cells (CSCs) can be isolated from primitive neuroectodermal tumor (PNET) specimens. Moreover, mesenchymal stem-like cells (MSLCs) have been isolated from Korean glioma specimens. Here, we tested whether tumor spheres and MSLCs can be simultaneously isolated from a single PNET specimen, a question that has not been addressed.

Methods

We isolated single-cell suspensions from PNET specimens, then cultured these cells using methods for MSLCs or CSCs. Cultured cells were analyzed for surface markers of CSCs using immunocytochemistry and for surface markers of bone marrow-derived mesenchymal stem cells (BM-MSCs) using fluorescence-activated cell sorting (FACS). Tumor spheres were exposed to neural differentiation conditions, and MSLCs were exposed to mesenchymal differentiation conditions. Possible locations of MSLCs within PNET specimens were determined by immunofluorescence analysis of tumor sections.

Results

Cells similar to tumor spheres and MSLCs were independently isolated from one of two PNET specimens. Spheroid cells, termed PNET spheres, were positive for CD133 and nestin, and negative for musashi and podoplanin. PNET spheres were capable of differentiation into immature neural cells and astrocytes, but not oligodendrocytes or mature neural cells. FACS analysis revealed that adherent cells isolated from the same PNET specimen, termed PNET-MSLCs, had surface markers similar to BM-MSCs. These cells were capable of mesenchymal differentiation. Immunofluorescence labeling indicated that some CD105+ cells might be closely related to endothelial cells and pericytes.

Conclusion

We showed that both tumor spheres and MSLCs can be isolated from the same PNET specimen. PNET-MSLCs occupied a niche in the vicinity of the vasculature and could be a source of stroma for PNETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho KT, Wang KC, Kim SK, Shin SH, Chi JG, Cho BK (2002) Pediatric brain tumors: statistics of SNUH, Korea (1959–2000). Childs Nerv Syst 18(1–2):30–37

    Article  PubMed  Google Scholar 

  2. Dirks PB, Harris L, Hoffman HJ, Humphreys RP, Drake JM, Rutka JT (1996) Supratentorial primitive neuroectodermal tumors in children. J Neurooncol 29(1):75–84

    Article  PubMed  CAS  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  PubMed  CAS  Google Scholar 

  4. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315(26):1650–1659

    Article  PubMed  CAS  Google Scholar 

  5. Enguita-German M, Schiapparelli P, Rey JA, Castresana JS (2010) CD133+ cells from medulloblastoma and PNET cell lines are more resistant to cyclopamine inhibition of the sonic hedgehog signaling pathway than CD133− cells. Tumour Biol 31(5):381–390

    Article  PubMed  CAS  Google Scholar 

  6. Fidler IJ, Poste G (2008) The "seed and soil" hypothesis revisited. Lancet Oncol 9(8):808

    Article  PubMed  Google Scholar 

  7. Galli R, Binda E, Orfanelli U, Cipelletti B, Gritti A, De Vitis S, Fiocco R, Foroni C, Dimeco F, Vescovi A (2004) Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 64(19):7011–7021

    Article  PubMed  CAS  Google Scholar 

  8. Gan PP, Pasquier E, Kavallaris M (2007) Class III beta-tubulin mediates sensitivity to chemotherapeutic drugs in non small cell lung cancer. Cancer Res 67(19):9356–9363

    Article  PubMed  CAS  Google Scholar 

  9. Hayatsu N, Kaneko MK, Mishima K, Nishikawa R, Matsutani M, Price JE, Kato Y (2008) Podocalyxin expression in malignant astrocytic tumors. Biochem Biophys Res Commun 374(2):394–398

    Article  PubMed  CAS  Google Scholar 

  10. Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 100(25):15178–15183

    Article  PubMed  CAS  Google Scholar 

  11. Howell L, Mensah A, Brennan B, Makin G (2005) Detection of recurrence in childhood solid tumors. Cancer 103(6):1274–1279

    Article  PubMed  Google Scholar 

  12. Hussein D, Punjaruk W, Storer LC, Shaw L, Ottoman R, Peet A, Miller S, Bandopadhyay G, Heath R, Kumari R, Bowman KJ, Braker P, Rahman R, Jones GD, Watson S, Lowe J, Kerr ID, Grundy RG, Coyle B (2011) Pediatric brain tumor cancer stem cells: cell cycle dynamics, DNA repair, and etoposide extrusion. Neuro Oncol 13(1):70–83

    Article  PubMed  CAS  Google Scholar 

  13. Kaneko Y, Sakakibara S, Imai T, Suzuki A, Nakamura Y, Sawamoto K, Ogawa Y, Toyama Y, Miyata T, Okano H (2000) Musashi1: an evolutionally conserved marker for CNS progenitor cells including neural stem cells. Dev Neurosci 22(1–2):139–153

    Article  PubMed  CAS  Google Scholar 

  14. Kang SG, Shinojima N, Hossain A, Gumin J, Yong RL, Colman H, Marini F, Andreeff M, Lang FF (2010) Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 67(3):711–720

    Article  PubMed  Google Scholar 

  15. Kim SM, Kang SG, Park NR, Mok HS, Huh YM, Lee SJ, Jeun SS, Hong YK, Park CK, Lang FF (2011) Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Childs Nerv Syst 27(6):911–922

    Article  PubMed  Google Scholar 

  16. Kim YG, Jeon S, Sin GY, Shim JK, Kim BK, Shin HJ, Lee JH, Huh YM, Lee SJ, Kim EH, Park EK, Kim SH, Chang JH, Kim DS, Kim SH, Hong YK, Kang SG, Lang FF (2013) Existence of glioma stroma mesenchymal stemlike cells in Korean glioma specimens. Childs Nerv Syst 29(4):549–563

    Article  PubMed  Google Scholar 

  17. Kong BH, Park NR, Shim JK, Kim BK, Shin HJ, Lee JH, Huh YM, Lee SJ, Kim SH, Kim EH, Park EK, Chang JH, Kim DS, Kim SH, Hong YK, Kang SG, Lang FF (2013) Isolation of glioma cancer stem cells in relation to histological grades in glioma specimens. Childs Nerv Syst 29(2):217–229

    Article  PubMed  Google Scholar 

  18. Kong BH, Shin HD, Kim SH, Mok HS, Shim JK, Lee JH, Shin HJ, Huh YM, Kim EH, Park EK, Chang JH, Kim DS, Hong YK, Kim SH, Lee SJ, Kang SG (2013) Increased in vivo angiogenic effect of glioma stromal mesenchymal stem-like cells on glioma cancer stem cells from patients with glioblastoma. Int J Oncol 42(5):1754–1762

    PubMed  CAS  Google Scholar 

  19. Kuhl J, Muller HL, Berthold F, Kortmann RD, Deinlein F, Maass E, Graf N, Gnekow A, Scheurlen W, Gobel U, Wolff JE, Bamberg M, Kaatsch P, Kleihues P, Rating D, Sorensen N, Wiestler OD (1998) Preradiation chemotherapy of children and young adults with malignant brain tumors: results of the German pilot trial HIT'88/'89. Klin Padiatr 210(4):227–233

    Article  PubMed  CAS  Google Scholar 

  20. Lang FF, Amano T, Hata N, Gumin J, Aldape K, Colman H (2007) Bone marrow-derived mesenchymal stem cells are recruited to and alter the growth of human gliomas [abstract]. Neuro Oncol 9:596

    Google Scholar 

  21. Lang FF, Gumin J, Amano T, Hata N, Heimberger F, Marini F, Andreeff M, Aldape K, Sulman E, Colman H (2008) Tumor-derived mesenchymal stem cells in human gliomas: Isolation and biological properties [abstract]. J Clin Oncol 26(15S):2001

    Google Scholar 

  22. Lennon DP, Caplan AI (2006) Isolation of human marrow-derived mesenchymal stem cells. Exp Hematol 34(11):1604–1605

    Article  PubMed  CAS  Google Scholar 

  23. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114(2):97–109

    Article  PubMed  Google Scholar 

  24. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86(10):1099–1100

    PubMed  CAS  Google Scholar 

  25. Merchant TE, Fouladi M (2005) Ependymoma: new therapeutic approaches including radiation and chemotherapy. J Neurooncol 75(3):287–299

    Article  PubMed  Google Scholar 

  26. Messahel B, Ashley S, Saran F, Ellison D, Ironside J, Phipps K, Cox T, Chong WK, Robinson K, Picton S, Pinkerton CR, Mallucci C, Macarthur D, Jaspan T, Michalski A, Grundy RG, Children's Cancer Leukaemia Group Brain Tumour C (2009) Relapsed intracranial ependymoma in children in the UK: patterns of relapse, survival and therapeutic outcome. Eur J Cancer 45(10):1815–1823

    Article  PubMed  CAS  Google Scholar 

  27. Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M (2006) Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol 111(5):483–488

    Article  PubMed  CAS  Google Scholar 

  28. Mozzetti S, Ferlini C, Concolino P, Filippetti F, Raspaglio G, Prislei S, Gallo D, Martinelli E, Ranelletti FO, Ferrandina G, Scambia G (2005) Class III beta-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 11(1):298–305

    PubMed  CAS  Google Scholar 

  29. Paget S (1889) The distribution of secondary growths in cancer of the breast. Lancet 133:571–573

    Article  Google Scholar 

  30. Picard D, Miller S, Hawkins CE, Bouffet E, Rogers HA, Chan TS, Kim SK, Ra YS, Fangusaro J, Korshunov A, Toledano H, Nakamura H, Hayden JT, Chan J, Lafay-Cousin L, Hu P, Fan X, Muraszko KM, Pomeroy SL, Lau CC, Ng HK, Jones C, Van Meter T, Clifford SC, Eberhart C, Gajjar A, Pfister SM, Grundy RG, Huang A (2012) Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysis. Lancet Oncol 13(8):838–848

    Article  PubMed  Google Scholar 

  31. Piccirillo SG, Combi R, Cajola L, Patrizi A, Redaelli S, Bentivegna A, Baronchelli S, Maira G, Pollo B, Mangiola A, DiMeco F, Dalpra L, Vescovi AL (2009) Distinct pools of cancer stem-like cells coexist within human glioblastomas and display different tumorigenicity and independent genomic evolution. Oncogene 28(15):1807–1811

    Article  PubMed  CAS  Google Scholar 

  32. Shin GY, Shim JK, Lee JH, Shin HJ, Lee SJ, Huh YM, Kim EH, Park EK, Kim SH, Chang JH, Kim DS, Hong YK, Kim SH, Kang SG, Lang FF (2013) Changes in the biological characteristics of glioma cancer stem cells after serial in vivo subtransplantation. Childs Nerv Syst 29(1):55–64

    Article  PubMed  Google Scholar 

  33. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828

    PubMed  CAS  Google Scholar 

  34. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  PubMed  CAS  Google Scholar 

  35. Timmermann B, Kortmann RD, Kuhl J, Meisner C, Dieckmann K, Pietsch T, Bamberg M (2002) Role of radiotherapy in the treatment of supratentorial primitive neuroectodermal tumors in childhood: results of the prospective German brain tumor trials HIT 88/89 and 91. J Clin Oncol 20(3):842–849

    Article  PubMed  Google Scholar 

  36. Tommasi S, Mangia A, Lacalamita R, Bellizzi A, Fedele V, Chiriatti A, Thomssen C, Kendzierski N, Latorre A, Lorusso V, Schittulli F, Zito F, Kavallaris M, Paradiso A (2007) Cytoskeleton and paclitaxel sensitivity in breast cancer: the role of beta-tubulins. Int J Cancer 120(10):2078–2085

    Article  PubMed  CAS  Google Scholar 

  37. Turner CD, Rey-Casserly C, Liptak CC, Chordas C (2009) Late effects of therapy for pediatric brain tumor survivors. J Child Neurol 24(11):1455–1463

    Article  PubMed  Google Scholar 

  38. Zhang QB, Ji XY, Huang Q, Dong J, Zhu YD, Lan Q (2006) Differentiation profile of brain tumor stem cells: a comparative study with neural stem cells. Cell Res 16(12):909–915

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0004506), and the National R&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea (1020340).

Conflict of interest

The authors declare no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Su-Jae Lee or Seok-Gu Kang.

Additional information

Jiyong Kwak and Hye-Jin Shin contributed equally to this manuscript.

Su-Jae Lee and Seok-Gu Kang contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kwak, J., Shin, HJ., Kim, SH. et al. Isolation of tumor spheres and mesenchymal stem-like cells from a single primitive neuroectodermal tumor specimen. Childs Nerv Syst 29, 2229–2239 (2013). https://doi.org/10.1007/s00381-013-2201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2201-x

Keywords

Navigation