Skip to main content

Advertisement

Log in

Folate and epigenetic mechanisms in neural tube development and defects

  • Special Annual Issue
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Introduction

Multiple genetic and epigenetic factors involved in central nervous system (CNS) development influence the incidence of neural tube defects (NTDs).

Discussion

The beneficial effect of periconceptional folic acid on NTD prevention denotes a vital role for the single-carbon biochemical pathway in NTD genesis. Indeed, NTDs are associated with polymorphisms in a diversity of genes that encode folate pathway enzymes. Recent evidence suggests that CNS development and function, and consequently NTDs, are also associated with epigenetic mechanisms, many of which participate in the folate cycle and its input and output pathways. We provide an overview with select examples drawn from the authors’ research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Smithells RW, Sheppard S, Schorah CJ, Seller MJ, Nevin NC, Harris R, Read AP, Fielding DW (1980) Possible prevention of neural-tube defects by periconceptional vitamin supplementation. Lancet 1:339–340

    Article  CAS  PubMed  Google Scholar 

  2. Anonymous (1991) Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. MRC Vitamin Study Research Group. Lancet 338:131–137

    Article  Google Scholar 

  3. (1992) Recommendations for the use of folic acid to reduce the number of cases of spina bifida and other neural tube defects. MMWR Morb Mortal Wkly Rep 41(RR-14):1–7

  4. Czeizel AE, Dudas I (1992) Prevention of the first occurrence of neural-tube defects by periconceptional vitamin supplementation. N Engl J Med 327:1832–1835

    Article  CAS  PubMed  Google Scholar 

  5. Cornel MC, Erickson JD (1997) Comparison of national policies on periconceptional use of folic acid to prevent spina bifida and anencephaly (SBA). Teratology 55:134–137

    Article  CAS  PubMed  Google Scholar 

  6. Berry RJ, Crider KS, Yeargin-Allsopp M (2013) Periconceptional folic acid and risk of autism spectrum disorders. JAMA 309:611–613

    Article  CAS  PubMed  Google Scholar 

  7. De Wals P, Tairou F, Van Allen MI, Uh SH, Lowry RB, Sibbald B, Evans JA, Van den Hof MC, Zimmer P, Crowley M, Fernandez B, Lee NS, Niyonsenga T (2007) Reduction in neural-tube defects after folic acid fortification in Canada. N Engl J Med 357:135–142

    Article  PubMed  Google Scholar 

  8. Chen LT, Rivera MA (2004) The Costa Rican experience: reduction of neural tube defects following food fortification programs. Nutr Rev 62:S40–43

    Article  PubMed  Google Scholar 

  9. Honein MA, Paulozzi LJ, Mathews TJ, Erickson JD, Wong LY (2001) Impact of folic acid fortification of the US food supply on the occurrence of neural tube defects. JAMA 285:2981–2986

    Article  CAS  PubMed  Google Scholar 

  10. Grosse SD, Waitzman NJ, Romano PS, Mulinare J (2005) Reevaluating the benefits of folic acid fortification in the United States: economic analysis, regulation, and public health. Am J Public Health 95:1917–1922

    Article  PubMed  Google Scholar 

  11. Lopez-Camelo JS, Orioli IM, da Graca DM, Nazer-Herrera J, Rivera N, Ojeda ME, Canessa A, Wettig E, Fontannaz AM, Mellado C, Castilla EE (2005) Reduction of birth prevalence rates of neural tube defects after folic acid fortification in Chile. Am J Med Genet A 135:120–125

    PubMed  Google Scholar 

  12. Hernandez-Diaz S, Werler MM, Walker AM, Mitchell AA (2000) Folic acid antagonists during pregnancy and the risk of birth defects. N Engl J Med 343:1608–1614

    Article  CAS  PubMed  Google Scholar 

  13. Nelson EW, Crick WF, Cerda JJ, Wilder BJ, Streiff RR (1983) The effect of diphenylhydantoin (phenytoin) on the sequential stages of intestinal folate absorption. Drug Nutr Interact 2:47–56

    CAS  PubMed  Google Scholar 

  14. Koblin DD, Tomerson BW, Waldman FM (1990) Disruption of folate and vitamin B12 metabolism in aged rats following exposure to nitrous oxide. Anesthesiology 73:506–512

    Article  CAS  PubMed  Google Scholar 

  15. Selzer RR, Rosenblatt DS, Laxova R, Hogan K (2003) Adverse effect of nitrous oxide in a child with 5,10-methylenetetrahydrofolate reductase deficiency. N Engl J Med 349:45–50

    Article  PubMed  Google Scholar 

  16. Faessel HM, Slocum HK, Jackson RC, Boritzki TJ, Rustum YM, Nair MG, Greco WR (1998) Super in vitro synergy between inhibitors of dihydrofolate reductase and inhibitors of other folate-requiring enzymes: the critical role of polyglutamylation. Cancer Res 58:3036–3050

    CAS  PubMed  Google Scholar 

  17. Quinlivan EP, McPartlin J, Weir DG, Scott J (2000) Mechanism of the antimicrobial drug trimethoprim revisited. FASEB J 14:2519–2524

    Article  CAS  PubMed  Google Scholar 

  18. Thomas DM, Zalcberg JR (1998) 5-Fluorouracil: a pharmacological paradigm in the use of cytotoxics. Clin Exp Pharmacol Physiol 25:887–895

    Article  CAS  PubMed  Google Scholar 

  19. Ullman B, Lee M, Martin DW Jr, Santi DV (1978) Cytotoxicity of 5-fluoro-2′-deoxyuridine: requirement for reduced folate cofactors and antagonism by methotrexate. Proc Natl Acad Sci U S A 75:980–983

    Article  CAS  PubMed  Google Scholar 

  20. Rosenblatt DS, Fenton WA (2000) Inherited disorders of folate and cobalamine transport and metabolism. In: Scriver CR, Sly WS, Childs B, Beaudet A, Valle D, Kinzler K, Vogelstein B (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 3897–3927

    Google Scholar 

  21. Van den Veyver IB (2002) Genetic effects of methylation diets. Annu Rev Nutr 22:255–282

    Article  PubMed  CAS  Google Scholar 

  22. Post WS, Goldschmidt-Clermont PJ, Wilhide CC, Heldman AW, Sussman MS, Ouyang P, Milliken EE, Issa JP (1999) Methylation of the estrogen receptor gene is associated with aging and atherosclerosis in the cardiovascular system. Cardiovasc Res 43:985–991

    Article  CAS  PubMed  Google Scholar 

  23. Hobbs CA, Sherman SL, Yi P, Hopkins SE, Torfs CP, Hine RJ, Pogribna M, Rozen R, James SJ (2000) Polymorphisms in genes involved in folate metabolism as maternal risk factors for Down syndrome. Am J Hum Gen 67:623–630

    Article  CAS  Google Scholar 

  24. Roth TL (2012) Epigenetics of neurobiology and behavior during development and adulthood. Dev Psychobiol 54:590–597

    Article  CAS  PubMed  Google Scholar 

  25. Ichi S, Costa FF, Bischof JM, Nakazaki H, Shen YW, Boshnjaku V, Sharma S, Mania-Farnell B, McLone DG, Tomita T, Soares MB, Mayanil CS (2010) Folic acid remodels chromatin on Hes1 and Neurog2 promoters during caudal neural tube development. J Biol Chem 285:36922–36932

    Article  CAS  PubMed  Google Scholar 

  26. Mayanil CS, Ichi S, Farnell BM, Boshnjaku V, Tomita T, McLone DG (2011) Maternal intake of folic acid and neural crest stem cells. Vitam Horm 87:143–173

    Article  CAS  PubMed  Google Scholar 

  27. Iskandar BJ, Nelson A, Resnick D, Pate Skene JH, Gao P, Johnson C, Cook TD, Hariharan N (2004) Folic acid supplementation enhances repair of the adult central nervous system. Ann Neurol 56:221–227

    Article  CAS  PubMed  Google Scholar 

  28. Iskandar BJ, Rizk E, Meier B, Hariharan N, Bottiglieri T, Finnell RH, Jarrard DF, Banerjee RV, Skene JH, Nelson A, Patel N, Gherasim C, Simon K, Cook TD, Hogan KJ (2010) Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest 120:1603–1616

    Article  CAS  PubMed  Google Scholar 

  29. Askari BS, Krajinovic M (2010) Dihydrofolate reductase gene variations in susceptibility to disease and treatment outcomes. Current genomics 11:578–583

    Article  PubMed  Google Scholar 

  30. Boyles AL, Hammock P, Speer MC (2005) Candidate gene analysis in human neural tube defects. Am J Med Part C Sem Med Genet 135C:9–23

    Article  Google Scholar 

  31. Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH (2003) Homocysteine remethylation enzyme polymorphisms and increased risks for neural tube defects. Mol Genet Metab 78:216–221

    Article  CAS  PubMed  Google Scholar 

  32. Fagiolini M, Jensen CL, Champagne FA (2009) Epigenetic influences on brain development and plasticity. Curr Opin Neurobiol 19:207–212

    Article  CAS  PubMed  Google Scholar 

  33. Bohacek J, Mansuy IM (2013) Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38:220–236

    Article  CAS  PubMed  Google Scholar 

  34. Mazzio EA, Soliman KF (2012) Basic concepts of epigenetics: impact of environmental signals on gene expression. Epigenetics 7:119–130

    Article  CAS  PubMed  Google Scholar 

  35. Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  CAS  PubMed  Google Scholar 

  36. Feng J, Chang H, Li E, Fan G (2005) Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79:734–746

    Article  CAS  PubMed  Google Scholar 

  37. Di Vinci A, Brigati C, Casciano I, Banelli B, Borzi L, Forlani A, Ravetti GL, Allemanni G, Melloni I, Zona G, Spaziante R, Merlo DF, Romani M (2012) HOXA7, 9, and 10 are methylation targets associated with aggressive behavior in meningiomas. Transl Res 160:355–362

    Article  PubMed  CAS  Google Scholar 

  38. Bonasio R (2012) Emerging topics in epigenetics: ants, brains, and noncoding RNAs. Ann N Y Acad Sci 1260:14–23

    Article  CAS  PubMed  Google Scholar 

  39. Harkany T (2010) HDAC9 links epigenetics to dendrite development (commentary on Sugo et al.). Eur J Neurosci 31:1519–1520

    CAS  PubMed  Google Scholar 

  40. Nelson ED, Monteggia LM (2011) Epigenetics in the mature mammalian brain: effects on behavior and synaptic transmission. Neurobiol Learn Mem 96:53–60

    Article  CAS  PubMed  Google Scholar 

  41. Yao ZG, Liu Y, Zhang L, Huang L, Ma CM, Xu YF, Zhu H, Qin C (2012) Co-location of HDAC2 and insulin signaling components in the adult mouse hippocampus. Cell Mol Neurobiol 32:1337–1342

    Article  CAS  PubMed  Google Scholar 

  42. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, Silva AJ, Fan G (2010) Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci 13:423–430

    Article  CAS  PubMed  Google Scholar 

  43. He R, Eggert JA (2012) The finger of an angel: memory return with epigenetic manipulation. Epigenomics 4:295–302

    Article  CAS  PubMed  Google Scholar 

  44. Auger AP, Auger CJ (2011) Epigenetic turn ons and turn offs: chromatin reorganization and brain differentiation. Endocrinology 152:349–353

    Article  CAS  PubMed  Google Scholar 

  45. Szyf M (2012) Mind-body interrelationship in DNA methylation. Chemical Immunology and Allergy 98:85–99

    Article  CAS  PubMed  Google Scholar 

  46. Keverne EB (2011) Epigenetics and brain evolution. Epigenomics 3:183–191

    Article  CAS  PubMed  Google Scholar 

  47. Kosik KS, Rapp PR, Raz N, Small SA, Sweatt JD, Tsai LH (2012) Mechanisms of age-related cognitive change and targets for intervention: epigenetics. J Gerontol 67:741–746

    Article  CAS  Google Scholar 

  48. Qureshi IA, Mehler MF (2010) The emerging role of epigenetics in stroke: II. RNA regulatory circuitry. Arc Neurol 67:1435–1441

    Article  Google Scholar 

  49. Kurtuncu M, Tuzun E (2008) Multiple sclerosis: could it be an epigenetic disease? Medical Hypotheses 71:945–947

    Article  PubMed  CAS  Google Scholar 

  50. Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  CAS  PubMed  Google Scholar 

  51. Kirkbride JB, Susser E, Kundakovic M, Kresovich JK, Davey Smith G, Relton CL (2012) Prenatal nutrition, epigenetics and schizophrenia risk: can we test causal effects? Epigenomics 4:303–315

    Article  CAS  PubMed  Google Scholar 

  52. Zhao C, Wang F, Pun FW, Mei L, Ren L, Yu Z, Ng SK, Chen J, Tsang SY, Xue H (2012) Epigenetic regulation on GABRB2 isoforms expression: developmental variations and disruptions in psychotic disorders. Schizophr Res 134:260–266

    Article  PubMed  Google Scholar 

  53. Lubin FD (2012) Epileptogenesis: can the science of epigenetics give us answers? Epil Curr Am Epil Soc 12:105–110

    Article  Google Scholar 

  54. Zhang K, Schrag M, Crofton A, Trivedi R, Vinters H, Kirsch W (2012) Targeted proteomics for quantification of histone acetylation in Alzheimer’s disease. Proteomics 12:1261–1268

    Article  CAS  PubMed  Google Scholar 

  55. Bihaqi SW, Schumacher A, Maloney B, Lahiri DK, Zawia NH (2012) Do epigenetic pathways initiate late onset Alzheimer disease (LOAD): towards a new paradigm. Curr Alz Res 9:574–588

    CAS  Google Scholar 

  56. Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L (2011) In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 33:1563–1574

    Article  PubMed  Google Scholar 

  57. Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, Murakami P, Lessard A, Yolken RH, Feinberg AP, Potash JB (2012) Genome-wide DNA methylation scan in major depressive disorder. PLoS One 7:e34451

    Article  CAS  PubMed  Google Scholar 

  58. Nagy C, Turecki G (2012) Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. Epigenomics 4(4):445–457

    Article  CAS  PubMed  Google Scholar 

  59. Marian AJ (2012) Elements of ‘missing heritability’. Curr Opin Cardiol 27:197–201

    Article  PubMed  Google Scholar 

  60. Inoue K, Tanabe Y, Lupski JR (1999) Myelin deficiencies in both the central and the peripheral nervous systems associated with a SOX10 mutation. Ann Neurol 46:313–318

    Article  CAS  PubMed  Google Scholar 

  61. Guo JU, Ma DK, Mo H, Ball MP, Jang MH, Bonaguidi MA, Balazer JA, Eaves HL, Xie B, Ford E, Zhang K, Ming GL, Gao Y, Song H (2011) Neuronal activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 14(10):1345–1351

    Article  CAS  PubMed  Google Scholar 

  62. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, Agarwal S, Iyer LM, Liu DR, Aravind L, Rao A (2009) Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–935

    Article  CAS  PubMed  Google Scholar 

  63. Hohman RJ, Guitton MC, Veron M (1985) Inactivation of S-adenosyl-l-homocysteine hydrolase by cAMP results from dissociation of enzyme-bound NAD+. Proc Natl Acad Sci U S A 82:4578–4581

    Article  CAS  PubMed  Google Scholar 

  64. Bhasin M, Reinherz EL, Reche PA (2006) Recognition and classification of histones using support vector machine. J Comput Biol 13:102–112

    Article  CAS  PubMed  Google Scholar 

  65. Sterner DE, Berger SL (2000) Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64:435–459

    Article  CAS  PubMed  Google Scholar 

  66. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15:2343–2360

    Article  CAS  PubMed  Google Scholar 

  67. Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8:307–318

    Article  CAS  PubMed  Google Scholar 

  68. Nowak SJ, Corces VG (2004) Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214–220

    Article  CAS  PubMed  Google Scholar 

  69. Shilatifard A (2006) Chromatin modifications by methylation and ubiquitination: implications in the regulation of gene expression. Annu Rev Biochem 75:243–269

    Article  CAS  PubMed  Google Scholar 

  70. Nathan D, Ingvarsdottir K, Sterner DE, Bylebyl GR, Dokmanovic M, Dorsey JA, Whelan KA, Krsmanovic M, Lane WS, Meluh PB, Johnson ES, Berger SL (2006) Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev 20:966–976

    Article  CAS  PubMed  Google Scholar 

  71. Hassa PO, Haenni SS, Elser M, Hottiger MO (2006) Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going? Microbiol Mol Biol Rev 70:789–829

    Article  CAS  PubMed  Google Scholar 

  72. Cuthbert GL, Daujat S, Snowden AW, Erdjument-Bromage H, Hagiwara T, Yamada M, Schneider R, Gregory PD, Tempst P, Bannister AJ, Kouzarides T (2004) Histone deimination antagonizes arginine methylation. Cell 118:545–553

    Article  CAS  PubMed  Google Scholar 

  73. Wang Y, Wysocka J, Sayegh J, Lee YH, Perlin JR, Leonelli L, Sonbuchner LS, McDonald CH, Cook RG, Dou Y, Roeder RG, Clarke S, Stallcup MR, Allis CD, Coonrod SA (2004) Human PAD4 regulates histone arginine methylation levels via demethylimination. Science 306:279–283

    Article  CAS  PubMed  Google Scholar 

  74. Nelson CJ, Santos-Rosa H, Kouzarides T (2006) Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell 126:905–916

    Article  CAS  PubMed  Google Scholar 

  75. Zhang Y, Fatima N, Dufau ML (2005) Coordinated changes in DNA methylation and histone modifications regulate silencing/derepression of luteinizing hormone receptor gene transcription. Mol Cell Biol 25:7929–7939

    Article  CAS  PubMed  Google Scholar 

  76. Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15:490–495

    Article  CAS  PubMed  Google Scholar 

  77. Tamaru H, Selker EU (2001) A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283

    Article  CAS  PubMed  Google Scholar 

  78. Cheng X, Blumenthal RM (2010) Coordinated chromatin control: structural and functional linkage of DNA and histone methylation. Biochemistry 49(14):2999–3008

    Article  CAS  PubMed  Google Scholar 

  79. Gilbert N, Thomson I, Boyle S, Allan J, Ramsahoye B, Bickmore WA (2007) DNA methylation affects nuclear organization, histone modifications, and linker histone binding but not chromatin compaction. J Cell Biol 177:401–411

    Article  CAS  PubMed  Google Scholar 

  80. Ooi SK, Qiu C, Bernstein E, Li K, Jia D, Yang Z, Erdjument-Bromage H, Tempst P, Lin SP, Allis CD, Cheng X, Bestor TH (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  Google Scholar 

  81. Cedar H, Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10:295–304

    Article  CAS  PubMed  Google Scholar 

  82. El-Osta A (2003) DNMT cooperativity–the developing links between methylation, chromatin structure and cancer. Bioessays 25:1071–1084

    Article  CAS  PubMed  Google Scholar 

  83. Rai K, Jafri IF, Chidester S, James SR, Karpf AR, Cairns BR, Jones DA (2010) Dnmt3 and G9a cooperate for tissue-specific development in zebrafish. J Bio Chem 285(6):4110–4121

    Article  CAS  Google Scholar 

  84. Martinowich K, Hattori D, Wu H, Fouse S, He F, Hu Y, Fan G, Sun YE (2003) DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 302:890–893

    Article  CAS  PubMed  Google Scholar 

  85. Espada J, Ballestar E, Fraga MF, Villar-Garea A, Juarranz A, Stockert JC, Robertson KD, Fuks F, Esteller M (2004) Human DNA methyltransferase 1 is required for maintenance of the histone H3 modification pattern. J Biol Chem 279:37175–37184

    Article  CAS  PubMed  Google Scholar 

  86. Kim YI (2004) Folate, colorectal carcinogenesis, and DNA methylation: lessons from animal studies. Environ Mol Mutagen 44:10–25

    Article  CAS  PubMed  Google Scholar 

  87. Ulrich CM, Potter JD (2007) Folate and cancer—timing is everything. JAMA 297:2408–2409

    Article  CAS  PubMed  Google Scholar 

  88. Lee CT, Risom T, Strauss WM (2007) Evolutionary conservation of microRNA regulatory circuits: an examination of microRNA gene complexity and conserved microRNA-target interactions through metazoan phylogeny. DNA and cell biology 26:209–218

    Article  CAS  PubMed  Google Scholar 

  89. Iorio MV, Piovan C, Croce CM (2010) Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799:694–701

    Article  CAS  PubMed  Google Scholar 

  90. Huang J, Wang Y, Guo Y, Sun S (2010) Down-regulated microRNA-152 induces aberrant DNA methylation in hepatitis B virus-related hepatocellular carcinoma by targeting DNA methyltransferase 1. Hepatology 52:60–70

    Article  CAS  PubMed  Google Scholar 

  91. Braconi C, Huang N, Patel T (2010) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocytes. Hepatology 51:881–890

    CAS  PubMed  Google Scholar 

  92. Han M, Toli J, Abdellatif M (2011) MicroRNAs in the cardiovascular system. Curr Opin Cardiol 26:181–189

    Article  PubMed  Google Scholar 

  93. Bak M, Silahtaroglu A, Moller M, Christensen M, Rath MF, Skryabin B, Tommerup N, Kauppinen S (2008) MicroRNA expression in the adult mouse central nervous system. RNA 14:432–444

    Article  CAS  PubMed  Google Scholar 

  94. Smalheiser NR, Lugli G (2009) microRNA regulation of synaptic plasticity. Neuromol Med 11:133–140

    Article  CAS  Google Scholar 

  95. Mattson MP (2003) Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res Rev 2:329–342

    Article  CAS  PubMed  Google Scholar 

  96. Namihira M, Nakashima K, Taga T (2004) Developmental stage dependent regulation of DNA methylation and chromatin modification in a immature astrocyte specific gene promoter. FEBS Lett 572:184–188

    Article  CAS  PubMed  Google Scholar 

  97. Persengiev SP, Kilpatrick DL (1996) Nerve growth factor induced differentiation of neuronal cells requires gene methylation. Neuroreport 8:227–231

    Article  CAS  PubMed  Google Scholar 

  98. Frey L, Hauser WA (2003) Epidemiology of neural tube defects. Epilepsia 44(Suppl 3):4–13

    Article  PubMed  Google Scholar 

  99. Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE (2002) Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Gen 71:1222–1226

    Article  CAS  Google Scholar 

  100. Copp AJ, Greene ND (2010) Genetics and development of neural tube defects. J Pathol 220:217–230

    CAS  PubMed  Google Scholar 

  101. Shookhoff JM, Gallicano GI (2010) A new perspective on neural tube defects: folic acid and microRNA misexpression. Genesis 48:282–294

    CAS  PubMed  Google Scholar 

  102. Suren P, Roth C, Bresnahan M, Haugen M, Hornig M, Hirtz D, Lie KK, Lipkin WI, Magnus P, Reichborn-Kjennerud T, Schjolberg S, Davey Smith G, Oyen AS, Susser E, Stoltenberg C (2013) Association between maternal use of folic acid supplements and risk of autism spectrum disorders in children. JAMA 309:570–577

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bermans J. Iskandar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meethal, S.V., Hogan, K.J., Mayanil, C.S. et al. Folate and epigenetic mechanisms in neural tube development and defects. Childs Nerv Syst 29, 1427–1433 (2013). https://doi.org/10.1007/s00381-013-2162-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2162-0

Keywords

Navigation