Skip to main content

Advertisement

Log in

Identification of thymosins β4 and β10 in paediatric craniopharyngioma cystic fluid

  • Original Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Background

Adamantinomatous craniopharyngioma is the third most recurrent paediatric brain tumour. Although histologically benign, it behaves aggressively as a malignant tumour due to invasion of the hypothalamus and visual pathways. Surgery is still the first and almost the only mode of treatment, although serious damage can occur as a consequence of tumour localization. The proteomic characterization of the intracystic tumoural fluid could contribute to the comprehension of the tumorigenesis processes and to the development of therapeutic targets to reduce cyst volume, allowing less invasive surgery and/or delay of the radical resection of the tumour mass and the collateral serious effects.

Methods

Intracystic fluid was analysed by a LC-ESI-IT-MS top-down platform after acidification, deproteinization and chloroform liquid/liquid extraction.

Findings

Thymosin β4 and β10 peptides were for the first time identified in the intracystic fluid of adamantinomatous craniopharyngioma by low- and high-resolution MS analysis coupled with LC. The two peptides showed the same distribution trend in the analysed samples. Thymosin β4 and β10 were present in 77 % of the analysed samples. These peptides were not found in the cerebrospinal fluid available for two patients.

Interpretation

The presence of β-thymosins in the intracystic fluid of the tumour confirmed the secretion of these proteins in the extracellular environment. Due to their G-actin-sequestering activity and antiapoptotic and anti-inflammatory properties, these peptides could be strictly involved in both tumour progression and cyst development and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Prabhu VC, Brown HG (2005) The pathogenesis of craniopharyngiomas. Child’s Nerv Syst 21:622–627

    Article  Google Scholar 

  2. Ahmadi J, Destian S, Apuzzo MLJ, Segall HD, Zee CS (1992) Cystic fluid in craniopharyngiomas: MR imaging and quantitative analysis. Radiology 182:783–785

    PubMed  CAS  Google Scholar 

  3. Caldarelli M, Massimi L, Tamburrini G, Cappa M, Di Rocco C (2005) Long-term results of the surgical treatment of craniopharyngioma: the experience at the Policlinico Gemelli, Catholic University, Rome. Child’s Nerv Syst 21:747–757

    Article  CAS  Google Scholar 

  4. Thompson D, Phipps K, Hayward R (2005) Chraniopharyngioma in childhood: our evidence-based approach to management. Child’s Nerv Syst 21:660–668

    Article  Google Scholar 

  5. Cáceres A (2005) Intracavitary therapeutic options in the management of cystic craniopharyngioma. Child’s Nerv Syst 21:705–718

    Article  Google Scholar 

  6. Cavalheiro S, Dastoli PA, Silva NS, Toledo S, Lederman H, da Silva MC (2005) Use of interferon alpha in intratumoral chemotherapy for cystic craniopharyngioma. Child’s Nerv Syst 21:719–724

    Article  CAS  Google Scholar 

  7. Takahashi H, Yamaguci F, Teramoto A (2005) Long-term outcome and reconsideration of intracystic chemotherapy with bleomycin for craniopharyngioma in children. Child’s Nerv Syst 21:701–704

    Article  Google Scholar 

  8. Laffond C, Dellatolas G, Alapetite C, Puget S, Grill J, Habrand JL, Doz F, Chevignard M (2012) Quality-of-life, mood and executive functioning after childhood craniopharyngioma treated with surgery and proton beam therapy. Brain Inj 26:270–281

    Article  PubMed  CAS  Google Scholar 

  9. Arefyeva A, Semenova JB, Zubairaev MS, Kondrasheva EA, Moshkin AV (2002) Analysis of fluid in craniopharyngioma-related cysts in children: proteins, lactate and pH. Acta Neurochir 144:551–554

    Article  PubMed  CAS  Google Scholar 

  10. Schaub C, Bluet-Pajot MT, Szikla G, Lornet-Videau C, Mounier F, Talairach J (1978) Distribution of beta2-microglobulin in cerebrospinal fluid and in cystic fluid of brain tumors. A preliminary study. Pathol Biol (Paris) 26:381–385

    CAS  Google Scholar 

  11. Pettorini BL, Inizitari R, Massimi L, Tamburrini G, Caldarelli M, Fanali C, Cabras T, Messana I, Castagnola M, Di Rocco C (2010) The role of inflammation in the genesis of the cystic component of craniopharyngiomas. Child’s Nerv Syst 26:1179–1784

    Google Scholar 

  12. Han X, Aslanian A, Yates JR III (2008) Mass spectrometry for proteomics. Curr Opin Chem Biol 12:483–490

    Article  PubMed  CAS  Google Scholar 

  13. Messana I, Cabras T, Iavarone F, Vincenzoni F, Urbani A, Castagnola M (2013) Unraveling the different proteomic platforms. J Sep Sci 36:128–139

    Article  PubMed  CAS  Google Scholar 

  14. Desiderio C, D’Angelo L, Rossetti DV, Iavarone F, Giardina B, Castagnola M, Massimi L, Tamburrini G, Di Rocco C (2012) Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 12:2158–2166

    Article  PubMed  CAS  Google Scholar 

  15. Hannappel E (2010) Thymosin β4 and its posttranslational modifications. Ann N Y Acad Sci 1194:27–35

    Article  PubMed  CAS  Google Scholar 

  16. Inizitari R, Cabras T, Pisano E, Fanali C, Manconi B, Scarano E, Fiorita A, Paludetti G, Manni A, Nemolato S, Faa G, Castagnola M, Messana I (2009) HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins β4 and β10. J Sep Sci 32:57–63

    Article  Google Scholar 

  17. Honneger J, Mann K, Thierauf P, Zrinzo A, Fahlbusch R (1995) Human chorionic gonadotropin immunoreactivity in cystic intracanical tumors. Clin Endocrinol 42:235–241

    Article  Google Scholar 

  18. Honneger J, Rennae C, Fahlbusch R, Adams EF (1997) Progesteron receptor gene expression in craniopharyngiomas and evidence for biological activity. Neurosurgery 41:1359–1364

    Article  Google Scholar 

  19. Hannappel E (2007) β-thymosins. Ann N Y Acad Sci 1112:21–37

    Article  PubMed  CAS  Google Scholar 

  20. Sosne G, Qiu P, Goldstein AL, Wheater M (2010) Biological activities of thymosin β4 defined by active sites in short peptide sequences. FASEB J 24:2144–2151

    Article  PubMed  CAS  Google Scholar 

  21. Mannherz HG, Hannappel E (2009) The β-thymosins: intracellular and extracellular activities of a versatile actin binding protein family. Cell Motil Cytoskel 66:839–851

    Article  CAS  Google Scholar 

  22. Crockford D, Turyman N, Allan C, Angel J (2010) Thymosin β4: structure, function, and biological properties supporting current and future clinical applications. Ann N Y Acad Sci 1194:179–189

    Article  PubMed  CAS  Google Scholar 

  23. Philp D, Kleinman HK (2010) Animal studies with thymosin β4, a multifunctional tissue repair and regeneration peptide. Ann N Y Acad Sci 1194:81–86

    Article  PubMed  CAS  Google Scholar 

  24. Cha HJ, Jeong MJ, Kleinman HK (2003) Role of thymosin β4 in tumor metastasis and angiogenesis. J Natl Cancer Inst 95:1674–1680

    Article  PubMed  CAS  Google Scholar 

  25. Huff T, Müller CSG, Otto AM, Netzker R, Hannappel E (2001) β-thymosins, small acidic peptides with multiple functions. Int J Biochem Cell Biol 33:205–220

    Article  PubMed  CAS  Google Scholar 

  26. Smart N, Rossdeutsch A, Riley PR (2007) Thymosin β4 and angiogenesis: modes of action and therapeutic potential. Angiogenesis 10:229–241

    Article  PubMed  CAS  Google Scholar 

  27. Sun LW, Lim H (2007) Neurotrophic roles of the beta-thymosins in the development and regeneration of nervous system. Ann N Y Acad Sci 1112:210–218

    Article  PubMed  CAS  Google Scholar 

  28. Van Kesteren RE, Carter C, Dissel HMG, JvMY G, Syed NI, Spencer GE, Smit AB (2006) Local of actin-binding protein beta-thymosin regulates neurite outgrowth. J Neurosci 26:152–157

    Article  PubMed  Google Scholar 

  29. Popoli P, Pepponi R, Martire A, Armida M, Pèzzola A, Galluzzo M, Domenici MR, Potenza RL, Tebano MT, Mollinari C, Merlo D, Garaci E (2007) Neuroprotective effects of thymosin beta4 in experimental models of excitotoxicity. Ann NY Acad Sci 1112:219–224

    Article  PubMed  CAS  Google Scholar 

  30. Hardesty WM, Kelley MC, Mi D, Low RL, Caprioli RM (2011) Protein signatures for survival and recurrence in metastatic melanoma. J Proteome 74:1002–1014

    Article  CAS  Google Scholar 

  31. Kim NS, Kang YJ, Jo JO, Kim HY, Oh YR, Kim YO, Jung MH, Ock MS, Cha HJ (2011) Elevated expression of thymosin β4, vascular endothelial growth factor (VEGF), and hypoxia inducible factor (HIF)-1α in early-stage cervical cancers. Pathol Oncol Res 17:493–502

    Article  PubMed  CAS  Google Scholar 

  32. Yoon SY, Lee HR, Park Y, Kim JH, Kim SY, Yoon SR, Lee WJ, Cho BJ, Min H, Bang JW, Park H, Bang SI, Cho D (2011) Thymosin β4 expression correlates with lymph node metastasis through hypoxia inducible factor-α induction in breast cancer. Oncol Rep 25:23–31

    PubMed  CAS  Google Scholar 

  33. Wang ZY, Zeng FQ, Zhu ZH, Jiang GS, Lv L, Wan F, Dong R, Xyao XY, Xing SA (2012) Evaluation of thymosin β4 in the regulation of epithelia–mesenchymal transformation in urothelial carcinoma. Urol Oncol 30:167–176

    Article  PubMed  CAS  Google Scholar 

  34. Xiao Y, Chen Y, Wen J, Yan W, Zhou K, Cai W (2012) Thymosin β4: a potential molecular target for tumor therapy. Crit Rev Eukaryot Gene Expr 22:109–116

    Article  PubMed  CAS  Google Scholar 

  35. Ryu YK, Lee GH, Song KS, Kim YS, Moon EY (2012) Regulation of glycogen synthase kinase-3 by thymosin beta-4 is associated with gastric cancer cell migration. Int J Cancer 131:2067–2077

    Article  PubMed  CAS  Google Scholar 

  36. Can B, Karagoz F, Yildiz L, Yildirim A, Kefeli M, Gonullu G, Kandermir B (2012) Thymosin β4 is a novel potential prognostic marker in gastrointestinal stromal tumors. APMIS 120:689–698

    Article  PubMed  Google Scholar 

  37. Goldestein AL (2003) Thymosin β4: a new molecular target for antitumour strategies. J Natl Cancer Inst 95:1646–1647

    Article  Google Scholar 

  38. Tang MC, Chan LC, Yeh YC, Chen YC, Chou TY, Wang WS, Su Y (2011) Thymosin β4 induces colon cancer cell migration and clinical metastasis via enhancing ILK/IQGAP1/Rac1 signal transduction pathway. Cancer Lett 308:162–171

    Article  PubMed  CAS  Google Scholar 

  39. Cierniewski CS, Papiewska-Pajak I, Malinowski M, Sacewicz-Hofman I, Wiktorska M, Kryczka J, Wysocki T, Niewiarowska J, Bednarek R (2010) Thymosin β4 regulates migration of colon cancer cells by a pathway involving interaction with Ku80. Ann N Y Acad Sci 1194:60–71

    Article  PubMed  CAS  Google Scholar 

  40. Zhang Y, Feurino LW, Zhai Q, Wang H, Fisher WE, Chen C, Yao Q, Li M (2008) Thymosin beta 4 is overexpressed in human pancreatic cancer cells and stimulates proinflammatory cytokine secretion and JNK activation. Cancer Biol Ther 7:419–423

    Article  PubMed  CAS  Google Scholar 

  41. Huang HC, Hu CH, Tang MC, Wang WS, Chen PM, Su Y (2007) Thymosin β4 triggers an epithelial–mesenchymal transition in colorectal carcinoma by upregulating integrin-linked kinase. Oncogene 26:2781–2790

    Article  PubMed  CAS  Google Scholar 

  42. Lee H, Yoon SY, Song SB, Park Y, Kim TS, Kim S, Hur DY, Song HK, Park H, Cho D (2011) Interleukin-18-mediated interferon-gamma secretion is regulated by thymosin β4 in human NK cells. Immunobiology 216:1155–1162

    Article  PubMed  CAS  Google Scholar 

  43. Qiu P, Kurpakus Wheater M, Qiu Y, Sosne G (2011) Thymosin β4 inhibits TNF-α-induced NF-kB activation, IL-8 expression, and the sensitizing effects by its partners PINCH-1 and ILK. FASEB J 25:1815–1826

    Article  PubMed  CAS  Google Scholar 

  44. Wang WS, Chen PM, Hsiao HL, Wang HS, Liang WY, Su Y (2004) Overexpression of the thymosin β-4 gene is associated with increased invasion of SW480 colon carcinoma cells and the distant metastasis of human colorectal carcinoma. Oncogene 23:6666–6671

    Article  PubMed  CAS  Google Scholar 

  45. Sekine S, Shibata T, Kokubu A, Morishita Y, Noguchi M, Nakanishi Y, Sakamoto M, Hirohashi S (2002) Chranipharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 161:1997–2001

    Article  PubMed  CAS  Google Scholar 

  46. Buslei R, Nolde M, Hofmann B, Meissner S, Eyupoglu IY, Siebzehnrubl F, Hahnen E, Kreutzer J, Fahlbusch R (2005) Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 109:589–597

    Article  PubMed  CAS  Google Scholar 

  47. Gaston-Maussuet C, Andoniadou CL, Signore M, Jayakody SA, Charolidi N, Kyeyune R, Vernay B, Jacques TS, Taketo MM, Le Tissier P, Dattani MT, Martinez-Barbera JP (2011) Increased Wingless (Wnt) signaling in pituitary progenitor/stem cells gives rise to pituitary tumors in mice and humans. Proc Natl Acad Sci U S A 108:11482–11487

    Article  Google Scholar 

  48. Cani CMG, Matushita H, Carvalho LRS, Soares IC, Brito LP, Almeida MQ, Mendonça BB (2011) PROP1 and CTNNB1expression in adamantinomatous craniopharyngiomas with or without β-catenin mutation. Clinics 66:1849–1854

    PubMed  Google Scholar 

  49. Andoniadou CL, Massuet CG, Reddy R, Schneider RP, Blasco MA, Le Tissier P, Jacque TS, Pevny LH, Dattani MT, Martinez-Barbera JP (2012) Identification of novel pathways involved in the pathogenesis of human adamantinomatous craniopharyngioma. Acta Neuropathol 124:259–271

    Article  PubMed  CAS  Google Scholar 

  50. Nemolato S, Restivo A, Cabras T, Coni PP, Zorcolo L, Orrù G, Fanari M, Cau F, Gerosa C, Fanni D, Messana I, Castagnola M, Casula G, Faa G (2012) Thymosin β-4 in colorectal cancer is localized predominantly at the invasion front in tumor cells undergoing epithelial mesenchymal transition. Cancer Biol Ther 13:1–7

    Article  Google Scholar 

  51. Faa G, Nemolato S, Cabras T, Fanni D, Gerosa C, Fanari M, Locci A, Fanos V, Messana I, Castagnola M (2012) Thymosin β4 expression reveals intriguing similarities between fetal and cancer cells. Ann NY Acad Sci 1269:53–60

    Article  PubMed  CAS  Google Scholar 

  52. Castagnola M, Inzitari R, Fanali C, Iavarone F, Vitali A, Desiderio C, Vento G, Tirone C, Romagnoli C, Cabras T, Manconi B, Sanna MT, Boi R, Pisano E, Olianas A, Pellegrini M, Nemolato S, Heizmann CW, Faa G, Messana I (2011) The surprising composition of the salivary proteome of preterm human newborn. Mol Cell Proteomics 10:M110.003467

    Article  PubMed  Google Scholar 

  53. Sribenja S, Li M, Wongkham S, Wongkham C, Yao Q, Chen C (2009) Advances in thymosin β10 research: differential expression, molecular mechanisms, and clinical implications in cancer and other conditions. Cancer Invest 20:1–7

    Google Scholar 

  54. Kim YC, Kim BG, Lee JH (2012) Thymosin β10 expression driven by the human TERT promoter induces ovarian cancer-specific apoptosis through ROS production. PLoS One 7:e35399. doi:10.1371/journal.pone.0035399

    Article  PubMed  CAS  Google Scholar 

  55. Hannappel E, van Kampen M (1987) Determination of thymosin beta 4 in human blood cells and serum. J Chromatogr 397:279–285

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from Fondazione Roma—Terzo Settore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Desiderio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desiderio, C., Martelli, C., Rossetti, D.V. et al. Identification of thymosins β4 and β10 in paediatric craniopharyngioma cystic fluid. Childs Nerv Syst 29, 951–960 (2013). https://doi.org/10.1007/s00381-013-2069-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-013-2069-9

Keywords

Navigation