Skip to main content

Advertisement

Log in

Hydrocephalus and aquaporins: lessons learned from the bench

  • Review Paper
  • Published:
Child's Nervous System Aims and scope Submit manuscript

Abstract

Purpose

Hydrocephalus is a common disorder of defective cerebrospinal fluid (CSF) turnover. The identification of the aquaporin water channels (AQPs) led to the study of their role in the composition of biological fluids including CSF. The purpose of this study is to review the potential role of aquaporins in the pathogenesis, compensation, and possibly treatment of hydrocephalus.

Methods

We performed a MEDLINE search using the terms “aquaporin AND hydrocephalus.” The search returned a total of 20 titles. Eleven studies fulfilled the criteria for this review.

Results

Most studies were performed in animal models. The expression of AQPs in hydrocephalus is significantly altered. Aquaporin-1 levels at the choroid plexus are decreased in most models of hydrocephalus while CSF production and intracranial pressure are reduced in AQP1 knockout mice. In contrast, the expression of AQP4 in hydrocephalus is increased at its sites of expression. Aquaporin-4 knockout mice show a decreased clearance of brain edema via blood–CSF and blood–brain barrier (BBB) pathways and decreased survival in hydrocephalus models.

Conclusions

Aquaporin-1 is highly expressed at the choroid plexus and is related to CSF production. Aquaporin-4 is expressed at the ependyma, glia limitans, and at the perivascular end feet processes of astrocytes of the BBB, facilitating the water movement across these tissue interfaces. The observations obtained from animal studies and few cases in humans indicate an adaptive and protective role of AQPs in hydrocephalus by decreasing CSF production and increasing edema clearance. Aquaporins are attractive targets for the pharmaceutical treatment of hydrocephalus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kimelberg HK (2004) Water homeostasis in the brain: basic concepts. Neuroscience 129:851–860

    Article  CAS  PubMed  Google Scholar 

  2. Brown PD, Davies SL, Speake T, Millar ID (2004) Molecular mechanisms of cerebrospinal fluid production. Neuroscience 129:957–970

    Article  CAS  PubMed  Google Scholar 

  3. Macaulay N, Zeuthen T (2009) Water transport between CNS compartments: contributions of aquaporins and cotransporters. Neuroscience 168:941–956

    Article  PubMed  Google Scholar 

  4. Praetorius J (2007) Water and solute secretion by the choroid plexus. Pflugers Arch 454:1–18

    Article  CAS  PubMed  Google Scholar 

  5. Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol 265:F461

    CAS  PubMed  Google Scholar 

  6. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol (Lond) 542:3–16

    Article  CAS  Google Scholar 

  7. Badaut J, Lasbennes F, Magistretti PJ, Regli L (2002) Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 22:367–378

    Article  CAS  PubMed  Google Scholar 

  8. Tait MJ, Saadoun S, Bell BA, Papadopoulos MC (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43

    Article  CAS  PubMed  Google Scholar 

  9. Verkman AS (2009) Aquaporins: translating bench research to human disease. J Exp Biol 212:1707–1715

    Article  CAS  PubMed  Google Scholar 

  10. Badaut J, Regli L (2004) Distribution and possible roles of aquaporin 9 in the brain. Neuroscience 129:971–981

    Article  CAS  PubMed  Google Scholar 

  11. Gorelick DA, Praetorius J, Tsunenari T, Nielsen S, Agre P (2006) Aquaporin-11: a channel protein lacking apparent transport function expressed in brain. BMC Biochem 7:14

    Article  PubMed  Google Scholar 

  12. Shin I, Kim HJ, Lee JE, Gye MC (2006) Aquaporin7 expression during perinatal development of mouse brain. Neurosci Lett 409:106–111

    Article  CAS  PubMed  Google Scholar 

  13. Marmarou A (2007) A review of progress in understanding the pathophysiology and treatment of brain edema. Neurosurg Focus 22:E1

    Google Scholar 

  14. Pudenz RH (1981) The surgical treatment of hydrocephalus—an historical review. Surg Neurol 15:15–26

    Article  CAS  PubMed  Google Scholar 

  15. Rekate HL (2008) The definition and classification of hydrocephalus: a personal recommendation to stimulate debate. Cerebrospinal Fluid Research 5:2

    Article  PubMed  Google Scholar 

  16. Rekate HL (2009) A contemporary definition and classification of hydrocephalus. Semin Pediatr Neurol 16:9–15

    Article  PubMed  Google Scholar 

  17. Cserr HF (1971) Physiology of the choroid plexus. Physiol Rev 51:273–311

    CAS  PubMed  Google Scholar 

  18. McComb JG (1983) Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59:369–383

    Article  CAS  PubMed  Google Scholar 

  19. Mobasheri A, Marples D (2004) Expression of the AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537

    Article  CAS  PubMed  Google Scholar 

  20. Mobasheri A, Marples D, Young IS, Floyd RV, Moskaluk CA, Frigeri A (2007) Distribution of the AQP4 water channel in normal human tissues: protein and tissue microarrays reveal expression in several new anatomical locations, including the prostate gland and seminal vesicles. Channels Austin 1:29–38

    PubMed  Google Scholar 

  21. Praetorius J, Nielsen S (2006) Distribution of sodium transporters and aquaporin-1 in the human choroid plexus. Am J Physiol Cell Physiol 291:C59–C67

    Article  CAS  PubMed  Google Scholar 

  22. Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neuroscientist 13:470–485

    Article  CAS  PubMed  Google Scholar 

  23. Klatzo I (1994) Evolution of brain edema concepts. Acta Neurochir Suppl 60:3–6

    CAS  Google Scholar 

  24. Papadopoulos MC, Manley GT, Krishna S, Verkman AS (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 18:1291–1293

    CAS  PubMed  Google Scholar 

  25. Verkman AS, Binder DK, Bloch O, Auguste K, Papadopoulos MC (2006) Three distinct roles of aquaporin-4 in brain function revealed by knockout mice. Biochim Biophys Acta 1758:1085–1093

    Article  CAS  PubMed  Google Scholar 

  26. Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L (2001) Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab 21:477–482

    Article  CAS  PubMed  Google Scholar 

  27. Longatti PL, Basaldella L, Orvieto E, Fiorindi A, Carteri A (2004) Choroid plexus and aquaporin-1: a novel explanation of cerebrospinal fluid production. Pediatr Neurosurg 40:277–283

    Article  CAS  PubMed  Google Scholar 

  28. Nielsen S, Smith BL, Christensen EI, Agre P (1993) Distribution of the aquaporin CHIP in secretory and resorptive epithelia and capillary endothelia. Proc Natl Acad Sci U S A 90:7275–7279

    Article  CAS  PubMed  Google Scholar 

  29. Speake T, Freeman LJ, Brown PD (2003) Expression of aquaporin 1 and aquaporin 4 water channels in rat choroid plexus. Biochim Biophys Acta 1609:80–86

    Article  CAS  PubMed  Google Scholar 

  30. Johansson PA, Dziegielewska KM, Ek CJ, Habgood MD, Møllgård K, Potter A, Schuliga M, Saunders NR (2005) Aquaporin-1 in the choroid plexuses of developing mammalian brain. Cell Tissue Res 322:353–364

    Article  CAS  PubMed  Google Scholar 

  31. Furukawa M, Shimoda H, Kajiwara T, Kato S, Yanagisawa S (2008) Topographic study on nerve-associated lymphatic vessels in the murine craniofacial region by immunohistochemistry and electron microscopy. Biomed Res 29:289–296

    Article  CAS  PubMed  Google Scholar 

  32. Ohtani O, Ohtani Y (2008) Structure and function of rat lymph nodes. Arch Histol Cytol 71:69–76

    Article  PubMed  Google Scholar 

  33. Johnston M, Zakharov A, Papaiconomou C, Salmasi G, Armstrong D (2004) Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non-human primates and other mammalian species. Cerebrospinal Fluid Res 1:2

    Article  PubMed  Google Scholar 

  34. Kida S, Pantazis A, Weller RO (1993) CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19:480–488

    Article  CAS  PubMed  Google Scholar 

  35. Verkman AS, Mitra AK (2000) Structure and function of aquaporin water channels. Am J Physiol Ren Physiol 278:F13–F28

    CAS  Google Scholar 

  36. Oshio K, Song Y, Verkman AS, Manley GT (2003) Aquaporin-1 deletion reduces osmotic water permeability and cerebrospinal fluid production. Acta Neurochir Suppl 86:525–528

    CAS  PubMed  Google Scholar 

  37. Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel aquaporin-1. FASEB J 19:76–78

    CAS  PubMed  Google Scholar 

  38. Smith ZA, Moftakhar P, Malkasian D, Xiong Z, Vinters HV, Lazareff JA (2007) Choroid plexus hyperplasia: surgical treatment and immunohistochemical results. Case report. J Neurosurg 107:255–262

    PubMed  Google Scholar 

  39. Longatti P, Basaldella L, Orvieto E, Dei Tos A, Martinuzzi A (2006) Aquaporin(s) expression in choroid plexus tumours. Pediatr Neurosurg 42:228–233

    Article  PubMed  Google Scholar 

  40. Paul L, Madan M, Rammling M, Behman B, Pattisapu JV (2009) The altered expression of aquaporin 1 and 4 in choroid plexus of congenital hydrocephalus. Cerebrospinal Fluid Res 6:S7

    Article  Google Scholar 

  41. Masseguin C, Corcoran M, Carcenac C, Daunton NG, Güell A, Verkman AS, Gabrion J (2000) Altered gravity downregulates aquaporin-1 protein expression in choroid plexus. J Appl Physiol 88:843–850

    CAS  PubMed  Google Scholar 

  42. Edwards RJ, Dombrowski SM, Luciano MG, Pople IK (2004) Chronic hydrocephalus in adults. Brain Pathol 14:325–336

    Article  PubMed  Google Scholar 

  43. Masseguin C, Mani-Ponset L, Herbuté S, Tixier-Vidal A, Gabrion J (2001) Persistence of tight junctions and changes in apical structures and protein expression in choroid plexus epithelium of rats after short-term head-down tilt. J Neurocytol 30:365–377

    Article  CAS  PubMed  Google Scholar 

  44. Silverberg GD, Huhn S, Jaffe RA, Chang SD, Saul T, Heit G, Von Essen A, Rubenstein E (2002) Downregulation of cerebrospinal fluid production in patients with chronic hydrocephalus. J Neurosurg 97:1271–1275

    Article  PubMed  Google Scholar 

  45. Bloch O, Auguste KI, Manley GT, Verkman AS (2006) Accelerated progression of kaolin-induced hydrocephalus in aquaporin-4-deficient mice. J Cereb Blood Flow Metab 26:1527–1537

    Article  CAS  PubMed  Google Scholar 

  46. Collins P (1979) Experimental obstructive hydrocephalus in the rat: a scanning electron microscopic study. Neuropathol Appl Neurobiol 5:457–468

    Article  CAS  PubMed  Google Scholar 

  47. Agre P, Kozono D (2003) Aquaporin water channels: molecular mechanisms for human diseases. FEBS Lett 555:72–78

    Article  CAS  PubMed  Google Scholar 

  48. Badaut J, Brunet JF, Grollimund L, Hamou MF, Magistretti PJ, Villemure JG, Regli L (2003) Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Acta Neurochir Suppl 86:495–498

    CAS  PubMed  Google Scholar 

  49. Hirt L, Ternon B, Price M, Mastour N, Brunet J-F, Badaut J (2009) Protective role of early aquaporin 4 induction against postischemic edema formation. J Cereb Blood Flow Metab 29:423–433

    Article  CAS  PubMed  Google Scholar 

  50. Manley GT, Binder DK, Papadopoulos MC, Verkman AS (2004) New insights into water transport and edema in the central nervous system from phenotype analysis of aquaporin-4 null mice. Neuroscience 129:983–991

    Article  CAS  PubMed  Google Scholar 

  51. Nico B, Mangieri D, Tamma R, Longo V, Annese T, Crivellato E, Pollo B, Maderna E, Ribatti D, Salmaggi A (2009) Aquaporin-4 contributes to the resolution of peritumoural brain oedema in human glioblastoma multiforme after combined chemotherapy and radiotherapy. Eur J Cancer 45:3315–3325

    Article  CAS  PubMed  Google Scholar 

  52. Papadopoulos MC, Saadoun S, Binder DK, Manley GT, Krishna S, Verkman AS (2004) Molecular mechanisms of brain tumor edema. Neuroscience 129:1011–1020

    Article  CAS  PubMed  Google Scholar 

  53. Papadopoulos MC, Verkman AS (2007) Aquaporin-4 and brain edema. Pediatr Nephrol 22:778–784

    Article  PubMed  Google Scholar 

  54. Saadoun S, Papadopoulos M, Bell B, Krishna S, Davies D (2002) The aquaporin-4 water channel and brain tumour oedema. J Anat 200:528

    Article  CAS  PubMed  Google Scholar 

  55. Tait MJ, Saadoun S, Bell BA, Verkman AS, Papadopoulos MC (2010) Increased brain edema in aqp4-null mice in an experimental model of subarachnoid hemorrhage. Neuroscience 167:60–67

    Article  CAS  PubMed  Google Scholar 

  56. Yool A, Brown E, Flynn G (2009) Roles for novel pharmacological blockers of aquaporins in the treatment of brain oedema and cancer. Clin Exp Pharmacol Physiol 37:403–409

    Article  PubMed  Google Scholar 

  57. Zador Z, Bloch O, Yao X, Manley GT (2007) Aquaporins: role in cerebral edema and brain water balance. Prog Brain Res 161:185–194

    Article  CAS  PubMed  Google Scholar 

  58. Feng X, Papadopoulos MC, Liu J, Li L, Zhang D, Zhang H, Verkman AS, Ma T (2009) Sporadic obstructive hydrocephalus in Aqp4 null mice. J Neurosci Res 87:1150–1155

    Article  CAS  PubMed  Google Scholar 

  59. Skjolding A, Rowland I, Soegaard L, Praetorius J, Nielsen S, Penkowa M, Juhler M (2008) Spatiotemporal regulation of aquaporin-4 in the kaolin induced hydrocephalic rat brain—experimental study using in vivo MRI and immunological methods. Hydrocephalus 2008, Hannover, Germany, pp S1–45

  60. Skjolding A, Rowland I, Soegaard L, Praetorius J, Nielsen S, Penkowa M, Juhler M (2009) Aquaporins and histopathology in experimental hydrocephalus. Hydrocephalus 2009, Baltimore, USA

  61. Skjolding A, Rowland I, Soegaard L, Praetorius J, Nielsen S, Penkowa M, Juhler M (2010) Experimental hydrocephalus induces changes in constitutive aquaporin-4 expression and changes morphology of aquaporin-4 positive ependyma. International Hydrocephalus Workshop 2010, Crete, Greece

  62. Mao X, Enno TL, Del Bigio MR (2006) Aquaporin 4 changes in rat brain with severe hydrocephalus. Eur J Neurosci 23:2929–2936

    Article  PubMed  Google Scholar 

  63. Tourdias T, Dragonu I, Fushimi Y, Deloire MSA, Boiziau C, Brochet B, Moonen C, Petry KG, Dousset V (2009) Aquaporin 4 correlates with apparent diffusion coefficient and hydrocephalus severity in the rat brain: a combined MRI-histological study. Neuroimage 47:659–666

    Article  PubMed  Google Scholar 

  64. Shen XQ, Miyajima M, Ogino I, Arai H (2006) Expression of the water-channel protein aquaporin 4 in the H-Tx rat: possible compensatory role in spontaneously arrested hydrocephalus. J Neurosurg 105:459–464

    PubMed  Google Scholar 

  65. Mcallister JP, Miller JM (2006) Aquaporin 4 and hydrocephalus. J Neurosurg 105:457–458, discussion 458

    PubMed  Google Scholar 

  66. Frigeri A, Nicchia GP, Svelto M (2007) Aquaporins as targets for drug discovery. Curr Pharm Des 13:2421–2427

    Article  CAS  PubMed  Google Scholar 

  67. Gunnarson E, Zelenina M, Aperia A (2004) Regulation of brain aquaporins. Neuroscience 129:947–955

    Article  CAS  PubMed  Google Scholar 

  68. Papadopoulos MC, Verkman AS (2008) Potential utility of aquaporin modulators for therapy of brain disorders. Prog Brain Res 170:589–601

    Article  CAS  PubMed  Google Scholar 

  69. Tanimura Y, Hiroaki Y, Fujiyoshi Y (2009) Acetazolamide reversibly inhibits water conduction by aquaporin-4. J Struct Biol 166:16–21

    Article  CAS  PubMed  Google Scholar 

  70. Niemietz CM, Tyerman SD (2002) New potent inhibitors of aquaporins: silver and gold compounds inhibit aquaporins of plant and human origin. FEBS Lett 531:443–447

    Article  CAS  PubMed  Google Scholar 

  71. Huber VJ, Tsujita M, Kwee IL, Nakada T (2009) Inhibition of aquaporin 4 by antiepileptic drugs. Bioorg Med Chem 17:418–424

    Article  CAS  PubMed  Google Scholar 

  72. Tang Y, Cai D, Chen Y (2007) Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J Mol Neurosci 31:83–93

    Article  CAS  PubMed  Google Scholar 

Download references

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold L. Rekate.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filippidis, A.S., Kalani, M.Y.S. & Rekate, H.L. Hydrocephalus and aquaporins: lessons learned from the bench. Childs Nerv Syst 27, 27–33 (2011). https://doi.org/10.1007/s00381-010-1227-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00381-010-1227-6

Keywords

Navigation