Skip to main content
Log in

Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes

  • Original Article
  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Aquaporin 4 (AQP4) is a key molecule for maintaining water balance in the central nervous system, and its dysfunction might cause brain edema. However, little is known about the regulation of AQP4 expression. Because thrombin has been implicated in brain edema formation, the purpose of this study is to determine whether thrombin affects expression of AQP4 in astrocytes. Here, the effect of thrombin on AQP4 expression in vitro was evaluated using Western blot analysis and RT-PCR. Meanwhile, we investigated whether the effect of thrombin on AQP4 expression was due to protease-activated receptor 1 (PAR-1). In addition, we examined the role of protein kinase C (PKC) in the effect of thrombin on AQP4 expression using Western blot analysis. We found that thrombin did not affect cell viability at concentrations of 0.05, 0.5, 5, or 50 nM but killed astrocytes at concentrations of 500 nM, with approx 72% of astrocytes surviving at 500 nM thrombin. Our data showed that AQP4 protein expression achieved only 28% of controls in 500 nM thrombin treatment, even if astrocytes survived approx 72% of controls at 500 nM thrombin. Thrombin significantly inhibited AQP4 in a time-and dose-dependent manner in vitro (p<0.05). Cathepsin-G, a thrombin PAR-1 inhibitor, reversed significantly (p<0.05) the effect of thrombin on AQP4 mRNA and protein expression in astrocytes. We also observed that PKC inhibitor H-7 or prolonged pretreatment with TPA can rapidly increase AQP4 expression (p<0.05). Thrombin might inhibit AQP4 expression in rat astrocytes, and this effect is possibly mediated by the PKC pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavanaugh K. P., Gurwitz D., Cunningham D. D., and Bradshaw R. A. (1990) Reciprocal modulation of astrocyte stellation by thrombin and proteasenexin-1. J. Neurochem. 54, 1735–1743.

    Article  PubMed  CAS  Google Scholar 

  • Coughlin R. S. (2000) Thrombin signalling and proteaseactivated receptors. Nature 407, 258–264.

    Article  PubMed  CAS  Google Scholar 

  • Grand R. J. A., Tumell A. S., and Grabham P.W. (1996) Cellular consequences of thrombin-receptor activation. Biochem. J. 313, 353–368.

    PubMed  CAS  Google Scholar 

  • Gurwitz D. and Cunningham D. D. (1988) Thrombin modulates and reverses neuroblastoma neurite out-growth. Proc. Natl. Acad. Sci. U. S. A. 85, 3440–3444.

    Article  PubMed  CAS  Google Scholar 

  • Han Z., Wax M. B., and Patil R. V. (1998) Regulation of aquaporin-4 water channels by phorbolester-dependent protein phosphorylation. J. Biol. Chem. 273, 6001–6004.

    Article  PubMed  CAS  Google Scholar 

  • Jung J. S., Bhat R. V., Preston G. M., Guggino W.B., Baraban J. M., and Agre P. (1994) Molecular characterization of an aquaporin cDNA from brain: candidate osmoreceptor and regulator of water balance. Proc. Natl. Acad. Sci. U. S. A. 91, 13,052–13,056.

    Article  CAS  Google Scholar 

  • Kataoka H., Joh T., Kasugai K., Okayama N., Moriyama A., Asai K., and Kato T. (1998) Expression of mRNA for heregulin and its receptor, ErbB-3 and ErbB-4, in human upper gastrointestinal mucosa. Life Sci. 63, 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Lee K. R., Kawai N., Kim S., Sagher O., and Hoff J. T. (1997) Mechanisms of edema formation after intracerebral hemorrhage: effects of thrombin on cerebral blood flow, blood-brain barrier permeability, and cell survival in a rat model. J. Neurosurg. 86, 272–278.

    PubMed  CAS  Google Scholar 

  • Manley G. T., Fujimura M., Ma T., Noshita N., Filiz F., Bollen A.W., et al. (2000) Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat. Med. 61, 59–163.

    Google Scholar 

  • Masada T., Xi G., Hua Y., and Keep R. F. (2000) The effects of thrombin preconditioning on focal cerebral ischemia. Brain Res. 867, 173–179.

    Article  PubMed  CAS  Google Scholar 

  • Muro H., Waguri-Nagaya Y., Mukofuiiwara Y., Iwahashi T., Otsuka T., Matsui, N., et al. (1999) Autocrine induction of gliostatin/platelet-derived endothelial cell growth factor (GLS/PD-ECGF) and GLS-induced expression of matrix metaloproteinases in rheumatoid arthritis synoviocytes. Rheumatology (Oxford) 38, 1195–1202.

    Article  CAS  Google Scholar 

  • Nakahama K., Nagano M., Fujioka A., Shinoda K., and Sasaki H. (1999) Effect of TPA on aquaporin 4 mRNA expression in cultured rat astrocytes. Glia 25, 240–246.

    Article  PubMed  CAS  Google Scholar 

  • Neveu I., Jehan F., Jandrot-Perrus M., Wion D., and Brachet P (1993) Enhancement of the synthesis and secretion of nerve growth factor in primary cultures of glial cells by proteases: a possible involvement of thrombin. J. Neurochem. 60, 858–867.

    Article  PubMed  CAS  Google Scholar 

  • Nicole O., Goldshmidt A., Hamill C. E., Sorensen S. D., Sastre A., Lyuboslavsky P., et al. (2005) Activation of protease-activated receptor-1 triggers as trogliosis after brain injury. J. Neurosci. 25, 4319–4329.

    Article  PubMed  CAS  Google Scholar 

  • Nudel U., Zakut R., Shani M., Neuman S., Levy Z., and Yaffe D. (1983) The nucleotide sequence of the rat cytoplasmic beta-actin gene. Nucleic Acids Res. 11, 1759–1771.

    Article  PubMed  CAS  Google Scholar 

  • Ohyama H., Hosomi N., Takahashi T., Mizushige K., and Kohno M. (2001) Thrombin inhibition attenuates neurodegeneration and cerebral edema formation following transient forebrain ischemia. Brain Res. 902, 264–271.

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulos M. C., Manley G.T., Krishna S., and Verkman A. S. (2004) Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J. 18, 1291–1293.

    PubMed  CAS  Google Scholar 

  • Renesto P., Si-Tahar M., Moniatte M., Balloy V., Van Dorsselaer A., Pidard D., and Chignard M. (1997) Specific inhibition of thrombin-induced cell activation by the neutrophil proteinases elastase, cathepsin G, and proteinase 3: evidence for distinct cleavage sites within the aminoterminal domain of the thrombin receptor. Blood 89, 1944–1953.

    PubMed  CAS  Google Scholar 

  • Saadoun S., Papadopoulos M. C., Davies D. C., Krishna S., and Bell B. A. (2002) Aquaporin-4 expression is increased in oedematous human brain tumours. J. Neurol. Neurosurg. Psychiatry 72, 262–265.

    Article  PubMed  CAS  Google Scholar 

  • Sun M. C., Honey C. R., Berk C., Wong N. L., and Tsui J. K. (2003) Regulation of aquaporin-4 in a traumatic brain injury model in rats. J. Neurosurg. 98, 565–569.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka C. and Nishizuka Y. (1994) The protein kinase C family for neuronal signaling. Annu. Rev. Neurosci. 17, 551–567.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka J., Toku K., Zhang B., Ishihara K., Sakanaka, M., and Maeda N. (1999) Astrocytes preventneuronal death induced by reactive oxygen and nitrogen species. Glia 28, 85–96.

    Article  PubMed  CAS  Google Scholar 

  • Vaughan P. J., Pike C. J., Cotman C.W., and Cunningham D. D. (1995) Thrombin receptor activation protects neurons and astrocytes from cell death produced by environmental insults. J. Neurosci. 15, 5389–5401.

    PubMed  CAS  Google Scholar 

  • Vergnolle N. (2000) Proteinase-activated receptors—novel signals for gastrointestinal pathophysiology (Review). Aliment. Pharmacol. Ther. 14, 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Wang H. and Resier G. (2003) The role of the Ca-sensitive tyrosine kinase Pyk2 and Src in thrombin signalling in rat astrocytes. J. Neurochem. 84, 1349–1357.

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Ubl J. J., and Reiser G. (2002a) The four subtypes of protease-activated receptors, co-expressed in rat astrocytes, evoke different physiological signaling. Glia 37, 53–63.

    Article  PubMed  CAS  Google Scholar 

  • Wang H., Ubl J. J., Stricker R., and Resier G. (2002b) Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am. J. Physiol. Cell. Physiol. 283, 1351–1364.

    Google Scholar 

  • Yajun J., Jimin W., Ya H., et al. (2002) Thrombin-receptor activation and thrombin-induced brain tolerance. J. Cereb. Blood Flow Metab. 22, 404–410.

    Google Scholar 

  • Yamamoto N., Sobue K., Miyachi T., Inagaki M., Miura Y., Katsuya H., and Asai K. (2001a) Differential regulation of aquaporin expression in astrocytes by protein kinase C. Brain Res. Mol. Brain Res. 95, 110–116.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto N., Yoneda K., Asai K., Sobue K., Tada T., Fujita Y., et al. (2001) Alterations in the expression of the AQP family in cultured rat astrocytes during and reoxygenation. Mol. Bran Res. 90, 26–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingfang Cai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Cai, D. & Chen, Y. Thrombin inhibits aquaporin 4 expression through protein kinase C-dependent pathway in cultured astrocytes. J Mol Neurosci 31, 83–93 (2007). https://doi.org/10.1007/BF02686120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02686120

Index Entries

Navigation