Skip to main content

Advertisement

Log in

Effect of myocardial contractility on hemodynamic end points under concomitant microvascular disease in a porcine model

  • Original Article
  • Published:
Heart and Vessels Aims and scope Submit manuscript

Abstract

In this study, coronary diagnostic parameters, pressure drop coefficient (CDP: ratio of trans-stenotic pressure drop to distal dynamic pressure), and lesion flow coefficient (LFC: ratio of % area stenosis (%AS) to the CDP at throat region), were evaluated to distinguish levels of %AS under varying contractility conditions, in the presence of microvascular disease (MVD). In 10 pigs, %AS and MVD were created using angioplasty balloons and 90-μm microspheres, respectively. Simultaneous measurements of pressure drop, left ventricular pressure (p), and velocity were obtained. Contractility was calculated as (dp/dt)max, categorized into low contractility <900 mmHg/s and high contractility >900 mmHg/s, and in each group, compared between %AS <50 and >50 using analysis of variance. In the presence of MVD, between the %AS <50 and >50 groups, values of CDP (71 ± 1.4 and 121 ± 1.3) and LFC (0.10 ± 0.04 and 0.19 ± 0.04) were significantly different (P < 0.05), under low-contractility conditions. A similar %AS trend was observed under high-contractility conditions (CDP: 18 ± 1.4 and 91 ± 1.4; LFC: 0.08 ± 0.04 and 0.25 ± 0.04). Under MVD conditions, similar to fractional flow reserve, CDP and LFC were not influenced by contractility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. White CW, Wright CB, Doty DB, Hiratza LF, Eastham CL, Harrison DG, Marcus ML (1984) Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310(13):819–824

    Article  CAS  PubMed  Google Scholar 

  2. Gould KL, Lipscomb K (1974) Effects of coronary stenoses on coronary flow reserve and resistance. Am J Cardiol 34(1):48–55

    Article  CAS  PubMed  Google Scholar 

  3. Gould KL, Lipscomb K, Hamilton GW (1974) Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. Am J Cardiol 33(1):87–94

    Article  CAS  PubMed  Google Scholar 

  4. Knaapen P, Camici PG, Marques KM, Nijveldt R, Bax JJ, Westerhof N, Gotte MJ, Jerosch-Herold M, Schelbert HR, Lammertsma AA, van Rossum AC (2009) Coronary microvascular resistance: methods for its quantification in humans. Basic Res Cardiol 104(5):485–498

    Article  PubMed Central  PubMed  Google Scholar 

  5. Emanuelsson H, Dohnal M, Lamm C, Tenerz L (1991) Initial experiences with a miniaturized pressure transducer during coronary angioplasty. Catheter Cardiovasc Diagn 24(2):137–143

    Article  CAS  Google Scholar 

  6. Lederman S, Menegus MA, Greenberg MA (1997) Fractional flow reserve. Am Coll Cardiol Curr J Rev 6(1):34–35

    Google Scholar 

  7. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL (1993) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87(4):1354–1367

    Article  CAS  PubMed  Google Scholar 

  8. Fearon WF, Tonino PA, De Bruyne B, Siebert U, Pijls NH (2007) Rationale and design of the fractional flow reserve versus angiography for multivessel evaluation (FAME) study. Am Heart J 154(4):632–636

    Article  PubMed  Google Scholar 

  9. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, De Bruyne B (2010) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the FAME (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol 56(3):177–184

    Google Scholar 

  10. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, Maccarthy PA, Van’t Veer M, Pijls NH (2010) Angiographic versus functional severity of coronary artery stenoses in the FAME study fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol 55(25):2816–2821

    Google Scholar 

  11. Aarnoudse W, Fearon WF, Manoharan G, Geven M, van de Vosse F, Rutten M, De Bruyne B, Pijls NH (2004) Epicardial stenosis severity does not affect minimal microcirculatory resistance. Circulation 110(15):2137–2142

    Article  PubMed  Google Scholar 

  12. Banerjee RK, Ashtekar KD, Effat MA, Helmy TA, Kim E, Schneeberger EW, Sinha RA, Gottliebson WM, Back LH (2009) Concurrent assessment of epicardial coronary artery stenosis and microvascular dysfunction using diagnostic endpoints derived from fundamental fluid dynamics principles. J Invasive Cardiol 21(10):511–517

    PubMed  Google Scholar 

  13. Chamuleau SA, Siebes M, Meuwissen M, Koch KT, Spaan JA, Piek JJ (2003) Association between coronary lesion severity and distal microvascular resistance in patients with coronary artery disease. Am J Physiol Heart Circ Physiol 285(5):H2194–H2200

    CAS  PubMed  Google Scholar 

  14. Fearon WF, Aarnoudse W, Pijls NH, De Bruyne B, Balsam LB, Cooke DT, Robbins RC, Fitzgerald PJ, Yeung AC, Yock PG (2004) Microvascular resistance is not influenced by epicardial coronary artery stenosis severity: experimental validation. Circulation 109(19):2269–2272

    Article  PubMed  Google Scholar 

  15. Marzilli M (2007) European Society of Cardiology working groups. Working Group 6: coronary pathophysiology and microcirculation. Interview by Emma Baines. Circulation 115(23):f117–f118

    PubMed  Google Scholar 

  16. Marzilli M, Sambuceti G, Fedele S, L’Abbate A (2000) Coronary microcirculatory vasoconstriction during ischemia in patients with unstable angina. J Am Coll Cardiol 35(2):327–334

    Article  CAS  PubMed  Google Scholar 

  17. Melikian N, Vercauteren S, Fearon WF, Cuisset T, MacCarthy PA, Davidavicius G, Aarnoudse W, Bartunek J, Vanderheyden M, Wyffels E, Wijns W, Heyndrickx GR, Pijls NH, de Bruyne B (2010) Quantitative assessment of coronary microvascular function in patients with and without epicardial atherosclerosis. EuroIntervention 5(8):939–945

    Article  PubMed  Google Scholar 

  18. Sambuceti G, Marzilli M, Fedele S, Marini C, L’Abbate A (2001) Paradoxical increase in microvascular resistance during tachycardia downstream from a severe stenosis in patients with coronary artery disease: reversal by angioplasty. Circulation 103(19):2352–2360

    Article  CAS  PubMed  Google Scholar 

  19. Camici PG, Crea F (2007) Coronary microvascular dysfunction. N Engl J Med 356(8):830–840

    Article  CAS  PubMed  Google Scholar 

  20. Sambuceti G, Marzilli M, Mari A, Marini C, Schluter M, Testa R, Papini M, Marraccini P, Ciriello G, Marzullo P, L’Abbate A (2005) Coronary microcirculatory vasoconstriction is heterogeneously distributed in acutely ischemic myocardium. Am J Physiol Heart Circ Physiol 288(5):H2298–H2305

    Article  CAS  PubMed  Google Scholar 

  21. Sambuceti G, Marzullo P, Giorgetti A, Neglia D, Marzilli M, Salvadori P, L’Abbate A, Parodi O (1994) Global alteration in perfusion response to increasing oxygen consumption in patients with single-vessel coronary artery disease. Circulation 90(4):1696–1705

    Article  CAS  PubMed  Google Scholar 

  22. Siebes M, Verhoeff BJ, Meuwissen M, de Winter RJ, Spaan JA, Piek JJ (2004) Single-wire pressure and flow velocity measurement to quantify coronary stenosis hemodynamics and effects of percutaneous interventions. Circulation 109(6):756–762

    Article  PubMed  Google Scholar 

  23. Verhoeff BJ, Siebes M, Meuwissen M, Atasever B, Voskuil M, de Winter RJ, Koch KT, Tijssen JG, Spaan JA, Piek JJ (2005) Influence of percutaneous coronary intervention on coronary microvascular resistance index. Circulation 111(1):76–82

    Article  PubMed  Google Scholar 

  24. Aarnoudse W, van den Berg P, van de Vosse F, Geven M, Rutten M, Van Turnhout M, Fearon W, de Bruyne B, Pijls N (2004) Myocardial resistance assessed by guidewire-based pressure-temperature measurement: in vitro validation. Catheter Cardiovasc Interv 62(1):56–63

    Article  PubMed  Google Scholar 

  25. Fearon WF, Balsam LB, Farouque HM, Caffarelli AD, Robbins RC, Fitzgerald PJ, Yock PG, Yeung AC (2003) Novel index for invasively assessing the coronary microcirculation. Circulation 107(25):3129–3132

    Article  PubMed  Google Scholar 

  26. Melikian N, Kearney MT, Thomas MR, De Bruyne B, Shah AM, MacCarthy PA (2007) A simple thermodilution technique to assess coronary endothelium-dependent microvascular function in humans: validation and comparison with coronary flow reserve. Eur Heart J 28(18):2188–2194

    Article  PubMed  Google Scholar 

  27. Banerjee RK, Ashtekar KD, Helmy TA, Effat MA, Back LH, Khoury SF (2008) Hemodynamic diagnostics of epicardial coronary stenoses: in-vitro experimental and computational study. Biomed Eng Online 7:24

    Article  PubMed Central  PubMed  Google Scholar 

  28. Banerjee RK, Sinha Roy A, Back LH, Back MR, Khoury SF, Millard RW (2007) Characterizing momentum change and viscous loss of a hemodynamic endpoint in assessment of coronary lesions. J Biomech 40(3):652–662

    Article  PubMed  Google Scholar 

  29. Ashtekar K, Back LH, Khoury SF, Banerjee Rk (2007) In vitro quantification of guidewire flow-obstruction effect in model coronary stenoses for interventional diagnostic procedure. J Med Devices 1:185–196

    Article  Google Scholar 

  30. Banerjee RK, Back LH, Back MR, Cho YI (1999) Catheter obstruction effect on pulsatile flow rate—pressure drop during coronary angioplasty. J Biomech Eng 121(3):281–289

    Article  CAS  PubMed  Google Scholar 

  31. Peelukhana SV, Back LH, Banerjee RK (2009) Influence of coronary collateral flow on coronary diagnostic parameters: an in vitro study. J Biomech 42(16):2753–2759

    Article  PubMed  Google Scholar 

  32. Kolli KK, Banerjee RK, Peelukhana SV, Effat MA, Leesar MA, Arif I, Schneeberger EW, Succop P, Gottliebson WM, Helmy TA (2012) Effect of changes in contractility on pressure drop coefficient and fractional flow reserve in a porcine model. J Invasive Cardiol 24(1):6–12

    PubMed  Google Scholar 

  33. Sinha Roy A, Back MR, Khoury SF, Schneeberger EW, Back LH, Velury VV, Millard RW, Banerjee RK (2008) Functional and anatomical diagnosis of coronary artery stenoses. J Surg Res 150(1):24–33

    Article  PubMed  Google Scholar 

  34. Peelukhana SV, Banerjee RK, Kolli KK, Effat MA, Helmy TA, Leesar MA, Schneeberger EW, Succop P, Gottliebson W, Irif A (2012) Effect of heart rate on hemodynamic endpoints under concomitant microvascular disease in a porcine model. Am J Physiol Heart Circ Physiol 302(8):H1563–H1573

    Article  Google Scholar 

  35. Kolli KK, Banerjee RK, Peelukhana SV, Helmy TA, Leesar MA, Arif I, Schneeberger EW, Hand D, Succop P, Gottliebson WM, Effat MA (2011) Influence of heart rate on fractional flow reserve, pressure drop coefficient, and lesion flow coefficient for epicardial coronary stenosis in a porcine model. Am J Physiol Heart Circ Physiol 300(1):H382–H387

    Article  CAS  PubMed  Google Scholar 

  36. Kern MJ, de Bruyne B, Pijls NH (1997) From research to clinical practice: current role of intracoronary physiologically based decision making in the cardiac catheterization laboratory. J Am Coll Cardiol 30(3):613–620

    Article  CAS  PubMed  Google Scholar 

  37. Pijls NH, Van Gelder B, Van der Voort P, Peels K, Bracke FA, Bonnier HJ, el Gamal MI (1995) Fractional flow reserve. A useful index to evaluate the influence of an epicardial coronary stenosis on myocardial blood flow. Circulation 92(11):3183–3193

    Article  CAS  PubMed  Google Scholar 

  38. Siebes M, Chamuleau SA, Meuwissen M, Piek JJ, Spaan JA (2002) Influence of hemodynamic conditions on fractional flow reserve: parametric analysis of underlying model. Am J Physiol Heart Circ Physiol 283(4):H1462–H1470

    CAS  PubMed  Google Scholar 

  39. Wilson RF (1996) Assessing the severity of coronary-artery stenoses. N Engl J Med 334(26):1735–1737

    Article  CAS  PubMed  Google Scholar 

  40. Kern MJ, Lerman A, Bech JW, De Bruyne B, Eeckhout E, Fearon WF, Higano ST, Lim MJ, Meuwissen M, Piek JJ, Pijls NH, Siebes M, Spaan JA (2006) Physiological assessment of coronary artery disease in the cardiac catheterization laboratory: a scientific statement from the American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization, Council on Clinical Cardiology. Circulation 114(12):1321–1341

    Article  PubMed  Google Scholar 

  41. Adler D, Monrad ES, Hess OM, Krayenbuehl HP, Sonnenblick EH (1996) Time to dp/dt(max), a useful index for evaluation of contractility in the catheterization laboratory. Clin Cardiol 19(5):397–403

    Article  CAS  PubMed  Google Scholar 

  42. Drake-Holland AJ, Mills CJ, Noble MI, Pugh S (1990) Responses to changes in filling and contractility of indices of human left ventricular mechanical performance. J Physiol 422:29–39

    CAS  PubMed  Google Scholar 

  43. Herpfer GE (1970) Measurements of cardiac contractility. Principle of measurement methods and problems. Anaesthetist 19(1):35–41

    CAS  Google Scholar 

  44. Little WC, Park RC, Freeman GL (1987) Effects of regional ischemia and ventricular pacing on LV dP/dtmax–end-diastolic volume relation. Am J Physiol 252(5 Pt 2):H933–H940

    CAS  PubMed  Google Scholar 

  45. Mason DT (1969) Usefulness and limitations of the rate of rise of intraventricular pressure (dp–dt) in the evaluation of myocardial contractility in man. Am J Cardiol 23(4):516–527

    Article  CAS  PubMed  Google Scholar 

  46. Mason DT, Braunwald E, Covell JW, Sonnenblick EH, Ross J Jr (1971) Assessment of cardiac contractility. The relation between the rate of pressure rise and ventricular pressure during isovolumic systole. Circulation 44(1):47–58

    Article  CAS  PubMed  Google Scholar 

  47. Schmidt HD, Hoppe H (1978) Influence of the contractile state of the heart of the preload dependence of the maximal rate of intraventricular pressure rise dP/dt max. Cardiology 63(2):112–125

    Article  CAS  PubMed  Google Scholar 

  48. Schmidt HD, Hoppe H, Muller KD (1979) The effect of changes in cardiac frequency on left and right ventricular dP/dt max at different contractile states of the myocardium. Eur J Appl Physiol Occup Physiol 42(3):183–198

    Article  CAS  PubMed  Google Scholar 

  49. Wallace AG, Skinner NS Jr, Mitchell JH (1963) Hemodynamic determinants of the maximal rate of rise of left ventricular pressure. Am J Physiol 205:30–36

    CAS  PubMed  Google Scholar 

  50. Yoshida S, Ganz W, Donoso R, Marcus HS, Swan HJ (1971) Coronary hemodynamics during successive elevation of heart rate by pacing in subjects with angina pectoris. Circulation 44(6):1062–1071

    Article  CAS  PubMed  Google Scholar 

  51. Xia S, Deng SB, Wang Y, Xiao J, Du JL, Zhang Y, Wang XC, Li YQ, Zhao R, He L, Xiang YL, She Q (2011) Clinical analysis of the risk factors of slow coronary flow. Heart Vessels 26(5):480–486

    Article  PubMed  Google Scholar 

  52. Ng MK, Yeung AC, Fearon WF (2006) Invasive assessment of the coronary microcirculation: superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation 113(17):2054–2061

    Article  PubMed  Google Scholar 

  53. Fox RW, Pritchard PJ, Mcdonals AT (2011) Introduction to fluid mechanics, 8th edn. Wiley, Hoboken

    Google Scholar 

  54. Kusama I, Hibi K, Kosuge M, Sumita S, Tsukahara K, Okuda J, Ebina T, Umemura S, Kimura K (2012) Intravascular ultrasound assessment of the association between spatial orientation of ruptured coronary plaques and remodeling morphology of culprit plaques in ST-elevation acute myocardial infarction. Heart Vessels 27(6):541–547

    Article  PubMed  Google Scholar 

  55. Muraoka Y, Sonoda S, Tsuda Y, Tanaka S, Okazaki M, Otsuji Y (2011) Effect of intravascular ultrasound-guided adjuvant high-pressure non-compliant balloon post-dilation after drug-eluting stent implantation. Heart Vessels 26(6):565–571

    Article  PubMed  Google Scholar 

  56. Sakata K, Kawashiri MA, Ino H, Matsubara T, Uno Y, Yasuda T, Miwa K, Kanaya H, Yamagishi M (2012) Intravascular ultrasound appearance of scattered necrotic core as an index for deterioration of coronary flow during intervention in acute coronary syndrome. Heart Vessels 27(5):443–452

    Article  PubMed  Google Scholar 

  57. Tanaka N, Pijls NH, Koolen JJ, Botman KJ, Michels HR, Brueren BR, Peels K, Shindo N, Yamashita J, Yamashina A (2013) Assessment of optimum stent deployment by stent boost imaging: comparison with intravascular ultrasound. Heart Vessels 28(1):1–6

    Article  PubMed  Google Scholar 

  58. Ahn JM, Kang SJ, Mintz GS, Oh JH, Kim WJ, Lee JY, Park DW, Lee SW, Kim YH, Lee CW, Park SW, Moon DH, Park SJ (2011) Validation of minimal luminal area measured by intravascular ultrasound for assessment of functionally significant coronary stenosis comparison with myocardial perfusion imaging. JACC Cardiovasc Interv 4(6):665–671

    Article  PubMed  Google Scholar 

  59. Kang SJ, Lee JY, Ahn JM, Mintz GS, Kim WJ, Park DW, Yun SC, Lee SW, Kim YH, Lee CW, Park SW, Park SJ (2011) Validation of intravascular ultrasound-derived parameters with fractional flow reserve for assessment of coronary stenosis severity. Circ Cardiovasc Interv 4(1):65–71

    Article  PubMed  Google Scholar 

  60. Patel B, Fisher M (2010) Therapeutic advances in myocardial microvascular resistance: unravelling the enigma. Pharmacol Ther 127(2):131–147

    Article  CAS  PubMed  Google Scholar 

  61. Triana JF, Li XY, Jamaluddin U, Thornby JI, Bolli R (1991) Postischemic myocardial “stunning”. Identification of major differences between the open-chest and the conscious dog and evaluation of the oxygen radical hypothesis in the conscious dog. Circ Res 69(3):731–747

    Article  CAS  PubMed  Google Scholar 

  62. De Hert SG, Robert D, Cromheecke S, Michard F, Nijs J, Rodrigus IE (2006) Evaluation of left ventricular function in anesthetized patients using femoral artery dP/dt(max). J Cardiothorac Vasc Anesth 20(3):325–330

    Article  PubMed  Google Scholar 

  63. Manders WT, Vatner SF (1976) Effects of sodium pentobarbital anesthesia on left ventricular function and distribution of cardiac output in dogs, with particular reference to the mechanism for tachycardia. Circ Res 39(4):512–517

    Article  CAS  PubMed  Google Scholar 

  64. Merin RG, Verdouw PD, de Jong JW (1982) Myocardial functional and metabolic responses to ischemia in swine during halothane and fentanyl anesthesia. Anesthesiology 56(2):84–92

    Article  CAS  PubMed  Google Scholar 

  65. Vatner SF, Braunwald E (1975) Cardiovascular control mechanisms in the conscious state. N Engl J Med 293(19):970–976

    Article  CAS  PubMed  Google Scholar 

  66. Vatner SF, Higgins CB, Patrick T, Franklin D, Braunwald E (1971) Effects of cardiac depression and of anesthesia on the myocardial action of a cardiac glycoside. J Clin Invest 50(12):2585–2595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Zimpfer M, Manders WT, Barger AC, Vatner SF (1982) Pentobarbital alters compensatory neural and humoral mechanisms in response to hemorrhage. Am J Physiol 243(5):H713–H721

    CAS  PubMed  Google Scholar 

  68. Hickey RF, Cason BA, Shubayev I (1994) Regional vasodilating properties of isoflurane in normal swine myocardium. Anesthesiology 80(3):574–581

    Article  CAS  PubMed  Google Scholar 

  69. Higgins CB, Vatner SF, Franklin D, Braunwald E (1973) Extent of regulation of the heart’s contractile state in the conscious dog by alteration in the frequency of contraction. J Clin Invest 52(5):1187–1194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Konala BC, Das A, Banerjee RK (2011) Influence of arterial wall compliance on the pressure drop across coronary artery stenoses under hyperemic flow condition. Mol Cell Biomech 8(1):1–20

    PubMed  Google Scholar 

  71. Konala BC, Das A, Banerjee RK (2011) Influence of arterial wall-stenosis compliance on the coronary diagnostic parameters. J Biomech 44(5):842–847

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by a Grant-In-Aid from Great Rivers Affiliate, a National-Scientific Development Grant from the American Heart Association (Grant reference numbers 0755236B and 0335270N), and a Department of Veteran Affairs Merit Review Grant (I01CX000342). The authors would like to thank the members of the Transport in Engineering and Medicine lab, Dr Mahesh Krishnamoorthy, Mr Marwan Al-Rjoub, and Mr Bhaskar C. Konala for their help in data acquisition during the animal experiments. The authors deeply regret the sudden and untimely death of our collaborator Dr William Gottliebson. We will not only miss his collaboration and understanding of Engineering in Medicine, but more so his friendship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupak K. Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peelukhana, S.V., Kolli, K.K., Leesar, M.A. et al. Effect of myocardial contractility on hemodynamic end points under concomitant microvascular disease in a porcine model. Heart Vessels 29, 97–109 (2014). https://doi.org/10.1007/s00380-013-0355-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00380-013-0355-9

Keywords

Navigation