Skip to main content
Log in

Dominant SST Mode in the Southern Hemisphere Extratropics and Its Influence on Atmospheric Circulation

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The variability in the Southern Ocean (SO) sea surface temperature (SST) has drawn increased attention due to its unique physical features; therefore, the temporal characteristics of the SO SST anomalies (SSTA) and their influence on extratropical atmospheric circulation are addressed in this study. Results from empirical orthogonal function analysis show that the principal mode of the SO SSTA exhibits a dipole-like structure, suggesting a negative correlation between the SSTA in the middle and high latitudes, which is referred to as the SO Dipole (SOD) in this study. The SOD features strong zonal symmetry, and could reflect more than 50% of total zonal-mean SSTA variability. We find that stronger (weaker) Subantarctic and Antarctic polar fronts are related to the positive (negative) phases of the SOD index, as well as the primary variability of the large-scale SO SSTA meridional gradient. During December–January–February, the Ferrel cell and the polar jet shift toward the Antarctic due to changes in the SSTA that could be associated with a positive phase of the SOD, and are also accompanied by a poleward shift of the subtropical jet. During June–July–August, in association with a positive SOD, the Ferrel cell and the polar jet are strengthened, accompanied by a strengthened subtropical jet. These seasonal differences are linked to the differences in the configuration of the polar jet and the subtropical jet in the Southern Hemisphere.

摘要

南大洋海表温度变率因其独特的物理特征得到越来越多的关注, 本文分析了南大洋海表温度变率特征及其对南半球热带外大气环流的影响。经验正交函数分解的结果表明, 南大洋海温变率的主模态表现为偶极子结构, 反应了南半球中、高纬度之间海温的反向变化, 称为南大洋偶极子 (SOD)。 SOD具有显著的纬向对称性, 其对南半球热带外纬向平均海温的解释方差在50%以上。当SOD为正 (负) 位相时, 海温经向梯度加强 (减弱)。 在12-2月的南半球夏季, 费雷尔环流和极锋急流位置的向极移动与SOD正位相对应的海温异常有关, 并伴随副热带急流位置的向极移动。在6-8月的南半球冬季, SOD正位相对应费雷尔环流和极锋急流强度的增强, 副热带急流的强度也相应增强。 这种SOD对大气环流影响的季节差异, 与极锋急流和副热带急流在不同季节的不同配置有关。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bracco, A., F. Kucharski, R. Kallummal, and F. Molteni, 2004: Internal variability, external forcing and climate trends in multi-decadal AGCM ensembles. Climate Dyn., 23, 659–678, https://doi.org/10.1007/s00382-004-0465-2.

    Article  Google Scholar 

  • Cai, W. J., and I. G. Watterson, 2002: Modes of interannual variability of the Southern Hemisphere circulation simulated by the CSIRO climate model. J. Climate, 15, 1159–1174, https://doi.org/10.1175/1520-0442(2002)015<1159:MOIVOT>2.0. CO;2.

    Article  Google Scholar 

  • Chen, W. Y., 1982: Fluctuations in northern hemisphere 700 mb height field associated with the Southern Oscillation. Mon. Wea. Rev., 110, 808–823, https://doi.org/10.1175/1520-0493(1982)110<0808:FINHMH>2.0.CO;2.

    Article  Google Scholar 

  • Chiang, J. C. H., and C. M. Bitz, 2005: Influence of high latitude ice cover on the marine Intertropical Convergence Zone. Climate Dyn., 25, 477–496, https://doi.org/10.1007/s00382-005-0040-5.

    Article  Google Scholar 

  • Ciasto, L. M., and D. W. J. Thompson, 2008: Observations of large–scale ocean–atmosphere interaction in the southern hemisphere. J. Climate, 21, 1244–1259, https://doi.org/10.1175/2007JCLI1809.1.

    Article  Google Scholar 

  • Compagnucci, R. H., and M. B. Richman, 2007: Can principal component analysis provide atmospheric circulation or teleconnection patterns? International Journal of Climatology, 28, 703–726, https://doi.org/10.1002/joc.1574.

    Article  Google Scholar 

  • Davis, R. E., 1976: Predictability of sea surface temperature and sea level pressure anomalies over the North Pacific Ocean. J. Phys. Oceanogr., 6, 249–266, https://doi.org/10.1175/1520-0485(1976)006<0249:POSSTA>2.0.CO;2.

    Article  Google Scholar 

  • Deser, C., A. Phillips, V. Bourdette, and H. Y. Teng, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527–546, https://doi.org/10.1007/s00382-010-0977-x.

    Article  Google Scholar 

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 1016–1022, https://doi.org/10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    Article  Google Scholar 

  • Gong, D. Y., and S. W. Wang, 1999: Definition of Antarctic Oscillation index. Geophys. Res. Lett., 26, 459–462, https://doi.org/10.1029/1999GL900003.

    Article  Google Scholar 

  • Hall, A., and M. Visbeck, 2002: Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Climate, 15, 3043–3057, https://doi.org/10.1175/1520-0442(2002)015<3043: SVITSH>2.0.CO;2.

    Article  Google Scholar 

  • Hartmann, D. L., and F. Lo, 1998: Wave-driven zonal flow vacillation in the Southern Hemisphere. J. Atmos. Sci., 55, 1303–1315, https://doi.org/10.1175/1520-0469(1998)055 <1303:WDZFVI>2.0.CO;2.

    Article  Google Scholar 

  • Hu, C. D., Q. G. Wu, S. Yang, Y. H. Yao, D. Chan, Z. N. Li, and K. Q. Deng, 2016: A linkage observed between austral autumn Antarctic Oscillation and preceding Southern Ocean SST anomalies. J. Climate, 29, 2109–2122, https://doi.org/10.1175/JCLI-D-15-0403.1.

    Article  Google Scholar 

  • Hwang, Y. T., and D. M. W. Frierson, 2013: Link between the double–intertropical convergence zone problem and cloud biases over the Southern Ocean. Proceedings of the National Academy of the United States of America, 110, 4935–4940, https://doi.org/10.1073/pnas.1213302110.

    Article  Google Scholar 

  • Kang, S. M., D. M. W. Frierson, and I. M. Held, 2009: The tropical response to extratropical thermal forcing in an idealized GCM: The importance of radiative feedbacks and convective parameterization. J. Atmos. Sci., 66, 2812–2827, https://doi.org/10.1175/2009JAS2924.1.

    Article  Google Scholar 

  • Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao, 2008: The response of the ITCZ to extratropical thermal forcing: Idealized slab–ocean experiments with a GCM. J. Climate, 21, 3521–3532, https://doi.org/10.1175/2007JCLI2146.1.

    Article  Google Scholar 

  • Kendall, M. G. 1975. Rank Correlation Methods. 4th ed., Charles Griffin, London.

    Google Scholar 

  • Kidson, J. W., and I. G. Watterson, 1999: The structure and predictability of the “high-latitude mode” in the CSIRO9 general circulation model. J. Atmos. Sci., 56, 3859–3873, https://doi.org/10.1175/1520-0469(1999)056<3859:TSAPOT>2.0. CO;2.

    Article  Google Scholar 

  • Kucharski, F., and F. Molteni, 2003: On non-linearities in a forced North Atlantic Oscillation. Climate Dyn., 21, 677–687, https://doi.org/10.1007/s00382-003-0347-z.

    Article  Google Scholar 

  • Kushnir, Y., W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, and R. Sutton, 2002: Atmospheric GCM response to extratropical SST anomalies: Synthesis and evaluation. J. Climate, 15, 2233–2256, https://doi.org/10.1175/1520-0442(2002)015 <2233:AGRTES>2.0.CO;2.

    Article  Google Scholar 

  • Lefebvre, W., H. Goosse, R. Timmermann, and T. Fichefet, 2004: Influence of the southern annular mode on the sea ice–ocean system. J. Geophys. Res., 109, C09005, https://doi.org/10.1029/2004JC002403.

    Article  Google Scholar 

  • Li, G., C. Y. Li, Y. K. Tan, and T. Bai, 2012: Seasonal evolution of dominant modes in South Pacific SST and relationship with ENSO. Adv. Atmos. Sci., 29, 1238–1248, https://doi.org/10.1007/s00376-012-1191-z.

    Article  Google Scholar 

  • Li, J. P., and J. X. L. Wang, 2003: A modified zonal index and its physical sense. Geophys. Res. Lett., 30, 1632, https://doi.org/10.1029/2003GL017441.

    Google Scholar 

  • Li, S. L., M. P. Hoerling, and S. L. Peng, 2006: Coupled oceanatmosphere response to Indian Ocean warmth. Geophys. Res. Lett., 33, L07713, https://doi.org/10.1029/2005GL025558.

    Google Scholar 

  • Liu, J. P., and J. A. Curry, 2010: Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proceedings of the National Academy of the United States of America, 107, 1 4987–1 4992, https://doi.org/10.1073/pnas.1003336107.

    Article  Google Scholar 

  • Liu, T., J. P. Li, and F. Zheng, 2015: Influence of the boreal autumn southern annular mode on winter precipitation over land in the Northern Hemisphere. J. Climate, 28, 8825–8839, https://doi.org/10.1175/JCLI-D-14-00704.1.

    Article  Google Scholar 

  • Liu, Z. Y., and H. J. Yang, 2003: Extratropical control of tropical climate, the atmospheric bridge and oceanic tunnel. Geophys. Res. Lett., 30, https://doi.org/10.1029/2002GL016492.

  • Liu, Z. Y., S. I. Shin, B. Otto–Bliesner, J. E. Kutzbach, E. C. Brady, and D. E. Lee, 2002: Tropical cooling at the last glacial maximum and extratropical ocean ventilation. Geophys. Res. Lett., 29, 48-1–48-4, https://doi.org/10.1029/2001GL013938.

    Google Scholar 

  • Lorenz, D. J., and D. L. Hartmann, 2001: Eddy–zonal flow feedback in the Southern Hemisphere. J. Atmos. Sci., 58, 3312–3327, https://doi.org/10.1175/1520-0469(2001)058 <3312:EZFFIT>2.0.CO;2.

    Article  Google Scholar 

  • Mann, H. B., 1945: Nonparametric tests against trend. Econometrica, 13, 245–259, https://doi.org/10.2307/1907187.

    Article  Google Scholar 

  • Marshall, J., H. Johnson, and J. Goodman, 2001: A study of the interaction of the North Atlantic Oscillation with ocean circulation. J. Climate, 14, 1399–1421, https://doi.org/10.1175/1520-0442(2001)014<1399:ASOTIO>2.0.CO;2.

    Article  Google Scholar 

  • Nakamura, H., T. Sampe, A. Goto, W. Ohfuchi, and S. P. Xie, 2008: On the importance of midlatitude oceanic frontal zones for the mean state and dominant variability in the tropospheric circulation. Geophys. Res. Lett., 35, L15709, https://doi.org/10.1029/2008GL034010.

    Article  Google Scholar 

  • Nan, S. L., and J. P. Li, 2003: The relationship between the summer precipitation in the Yangtze River valley and the boreal spring Southern Hemisphere annular mode. Geophys. Res. Lett., 30, 2266. https://doi.org/10.1029/2003GL018381.

    Article  Google Scholar 

  • North, G. R., T. L. Bell, R. F. Cahalan, F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699–706, https://doi.org/10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    Article  Google Scholar 

  • Ogawa, F., N. E. Omrani, K. Nishii, H. Nakamura, and N. Keenlyside, 2015: Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett., 42, 10 056–10 063, https://doi.org/10.1002/2015GL066538.

    Article  Google Scholar 

  • Ogawa, F., H. Nakamura, K. Nishii, T. Miyasaka, and A. Kuwano-Yoshida, 2016: Importance of midlatitude oceanic frontal zones for the annular mode variability: Interbasin differences in the southern annular mode signature. J. Climate, 29, 6179–6199, https://doi.org/10.1175/JCLI-D-15-0885.1.

    Article  Google Scholar 

  • Orsi, A. H., T. Whitworth III, and W. D. Nowlin Jr., 1995: On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Research Part I: Oceanographic Research Papers, 42, 641–673, https://doi.org/10.1016/0967-0637(95)00021-W.

    Article  Google Scholar 

  • Sampe, T., H. Nakamura, A. Goto, and W. Ohfuchi, 2010: Significance of a midlatitude SST frontal zone in the formation of a storm track and an eddy-driven westerly jet. J. Climate, 23, 1793–1814, https://doi.org/10.1175/2009JCLI3163.1.

    Article  Google Scholar 

  • Sen Gupta, A., and M. H. England, 2006: Coupled ocean–atmosphere–ice response to variations in the Southern Annular Mode. J. Climate, 19, 4457–4486, https://doi.org/10.1175/JCLI3843.1.

    Article  Google Scholar 

  • Sen Gupta, A., and M. H. England, 2007: Coupled oceanatmosphere feedback in the southern annular mode. J. Climate, 20, 3677–3692, https://doi.org/10.1175/JCLI4200.1.

    Article  Google Scholar 

  • Sen, P. K., 1968: Estimates of the regression coefficient based on Kendall’s tau. Journal of the American Statistical Association, 63, 1379–1389, https://doi.org/10.1080/01621459.1968. 10480934.

    Article  Google Scholar 

  • Swann, A. L. S., I. Y. Fung, and J. C. H. Chiang, 2012: Midlatitude afforestation shifts general circulation and tropical precipitation. Proceedings of the National Academy of Sciences of the United States of America, 109, 712–716, https://doi.org/10.1073/pnas.1116706108.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, https://doi.org/10.1175/BAMS-D-11-00094.1.

    Article  Google Scholar 

  • Theil, H., 1950: A rank-invariant method of linear and polynomial regression analysis. Nederl. Akad. Wetensch. Proc., 53, 386–392.

    Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 1000–1016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    Google Scholar 

  • Thompson, D. W. J., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011: Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. Nature Geoscience, 4, 741–749, https://doi.org/10.1038/ngeo 1296.

    Article  Google Scholar 

  • Visbeck, M., E. P. Chassignet, R. G. Curry, T. L. Delworth, R. R. Dickson, and K. Krahmann, 2003: The Ocean’s response to North Atlantic Oscillation variability. The North Atlantic Oscillation: Climatic Significance and Environmental Impact, J. W. Hurrell, Y. Kushnir, G. Ottersen, and M. Visbeck, Eds., American Geophysical Union, https://doi.org/10.1029/134GM06.

    Google Scholar 

  • Wang, F., 2010a: Subtropical dipole mode in the Southern Hemisphere: A global view. Geophys. Res. Lett., 37, L10702, https://doi.org/10.1029/2010GL042750.

    Google Scholar 

  • Wang, F. M., 2010b: Thermodynamic coupled modes in the tropical atmosphere-ocean: An analytical solution. J. Atmos. Sci., 67, 1667–1677, https://doi.org/10.1175/2009JAS3262.1.

    Article  Google Scholar 

  • Watterson, I. G., 2000: Southern midlatitude zonal wind vacillation and its interaction with the ocean in GCM simulations. J. Climate, 13, 562–578, https://doi.org/10.1175/1520-0442(2000)013<0562:SMZWVA>2.0.CO;2.

    Article  Google Scholar 

  • Wu, L. X., Z. Y. Liu, C. Li, and Y. Sun, 2007: Extratropical control of recent tropical Pacific decadal climate variability: A relay teleconnection. Climate Dyn., 28, 99–112, https://doi.org/10.1007/s00382-006-0198-5.

    Article  Google Scholar 

  • Wu, Q. G., and X. D. Zhang, 2011: Observed evidence of an impact of the Antarctic sea ice dipole on the Antarctic Oscillation. J. Climate, 24, 4508–4518, https://doi.org/10.1175/2011JCLI3965.1.

    Article  Google Scholar 

  • Wu, Z. W., J. Dou, and H. Lin, 2015: Potential influence of the November–December Southern Hemisphere annular mode on the East Asian winter precipitation: a new mechanism. Climate Dyn., 44, 1215–1226, https://doi.org/10.1007/s00382-014-2241-2.

    Article  Google Scholar 

  • Wu, Z. W., J. P. Li, B. Wang, and X. H. Liu, 2009: Can the Southern Hemisphere annular mode affect China winter monsoon? J. Geophys. Res., 114, D11107, https://doi.org/10.1029/2008 JD011501.

    Article  Google Scholar 

  • Xiao, B., Y. Zhang, X. Q. Yang, and Y. Nie, 2016: On the role of extratropical air-sea interaction in the persistence of the Southern Annular Mode. Geophys. Res. Lett., 43, 8806–8814, https://doi.org/10.1002/2016GL070255.

    Article  Google Scholar 

  • Yamazaki, K., and M. Watanabe, 2015: Effects of extratropical warming on ENSO amplitudes in an ensemble of a coupled GCM. Climate Dyn., 44, 679–693, https://doi.org/10.1007/s00382-014-2145-1.

    Article  Google Scholar 

  • Yang, H. J., and L. Wang, 2008: Estimating the nonlinear response of tropical ocean to extratropical forcing in a coupled climate model. Geophys. Res. Lett., 35, L15705, https://doi.org/10.1029/2008GL034256.

    Article  Google Scholar 

  • Yang, H. J., and L. Wang, 2011: Tropical oceanic response to extratropical thermal forcing in a coupled climate model: A comparison between the Atlantic and Pacific Oceans. J. Climate, 24, 3850–3866, https://doi.org/10.1175/2011JCLI3927.1.

    Article  Google Scholar 

  • Zhang, Q., H. J. Yang, Y. F. Zhong, and D. X. Wang, 2005: An idealized study of the impact of extratropical climate change on El Ni˜no–Southern Oscillation. Climate Dyn., 25, 869–880, https://doi.org/10.1007/s00382-005-0062-z.

    Article  Google Scholar 

  • Zheng, F., J. P. Li, L. Wang, F. Xie, and X. F. Li, 2015: Cross-seasonal influence of the December–February Southern Hemisphere annular mode on March–May meridional circulation and precipitation. J. Climate, 28, 6859–6881, https://doi.org/10.1175/JCLI-D-14-00515.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the editor and the anonymous reviewers for their comments and suggestions, which significantly contributed to improving the manuscript. This work was jointly supported by a National Natural Science Foundation of China NSFC project (Grant No. 41405086), the strategic priority research program grant of the Chinese Academy of Sciences (Grant No. XDA19070402), and the NSFC projects (41775090, 41705049). The NCEP/NCAR atmospheric reanalysis datasets are available at http://www.esrl.noaa.gov/psd/. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for CMIP, and we thank the climate modeling groups for producing and making available their model output."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Li, J., Kucharski, F. et al. Dominant SST Mode in the Southern Hemisphere Extratropics and Its Influence on Atmospheric Circulation. Adv. Atmos. Sci. 35, 881–895 (2018). https://doi.org/10.1007/s00376-017-7162-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7162-7

Key words

关键词

Navigation