Skip to main content
Log in

Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Poleward atmospheric moisture transport (AMT) into the Arctic Ocean can change atmospheric moisture or water vapor content and cause cloud formation and redistribution, which may change downward longwave radiation and, in turn, surface energy budgets, air temperatures, and sea-ice production and melt. In this study, we found a consistently enhanced poleward AMT across 60°N since 1959 based on the NCAR–NCEP reanalysis. Regional analysis demonstrates that the poleward AMT predominantly occurs over the North Atlantic and North Pacific regions, contributing about 57% and 32%, respectively, to the total transport. To improve our understanding of the driving force for this enhanced poleward AMT, we explored the role that extratropical cyclone activity may play. Climatologically, about 207 extratropical cyclones move across 60°N into the Arctic Ocean each year, among which about 66 (32% of the total) and 47 (23%) originate from the North Atlantic and North Pacific Ocean, respectively. When analyzing the linear trends of the time series constructed by using a 20-year running window, we found a positive correlation of 0.70 between poleward yearly AMT and the integrated cyclone activity index (measurement of cyclone intensity, number, and duration). This shows the consistent multidecadal changes between these two parameters and may suggest cyclone activity plays a driving role in the enhanced poleward AMT. Furthermore, a composite analysis indicates that intensification and poleward extension of the Icelandic low and accompanying strengthened cyclone activity play an important role in enhancing poleward AMT over the North Atlantic region.

摘要

向极大气水汽输送(AMT)进入北冰洋后, 改变了该地区的大气湿度和水含量, 引起云的形成和重新分布. 这会改变向下长波辐射, 进而改变地表能量平衡, 地面气温, 海冰的生成和融化. 在本研究中, 我们基于NCAR-NCEP再分析资料发现, 自1959年以后, 跨过60°N的向极大气水汽输送持续增加. 进一步计算表明, 向极大气水汽输送主要发生在北大西洋和北太平洋, 它们分别占总输送的57%和32%. 为了深入理解增强向极大气水汽输送的驱动力, 我们研究了外热带气旋所起的作用. 在气候平均意义上, 每年有207个外热带气旋跨过60°N进入北冰洋, 其中有66个气旋起源北大西洋(占总数的32%), 43个气旋起源于北太平洋(占总数的23%). 我们使用20年滑动窗口对向极大气水汽输送时间序列和综合气旋活动指数(CAI)时间序列进行线性趋势分析, 发现两者线性趋势都为增加, 而且相关达到0.7. 这表明, 上述两个时间序列的多年代际变化是相互协调的. 同时, 这也表明气旋活动驱动向极大气水汽输送的增强. 进一步的合成分析表明, 冰岛低压在强化的同时向极地中央地区伸展, 与此相伴随的是外热带气旋活动的加强, 这对北大西洋地区向极大气水汽输送的增强起了重要的作用.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baggett, C., and S. Lee, 2017: An identification of the mechanisms that lead to arctic warming during planetary-scale and synoptic-scale wave life cycles. J. Atmos. Sci., 74, 1859–1877, http://dx.doi.org/10.1175/JAS-D-16-0156.1.

    Article  Google Scholar 

  • Baggett, C., S. Lee, and S. Feldstein, 2016: An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci., 73, 4329–4347, http://dx.doi.org/10.1175/JAS-D-16-0033.1.

    Article  Google Scholar 

  • Bender, F. A.-M., V. Ramananthan, and G. Tselioudis, 2012: Changes in extratropical storm track cloudiness 1983–2008: Observational support for a poleward shift. Climate Dyn., 38, 2037–2053, https://doi.org/10.1007/s00382-011-1065-6.

    Article  Google Scholar 

  • Comiso, J. C., C. L. Parkinson, R. Gersten, and L. Stock, 2008: Accelerated decline in the Arctic sea ice cover. Geophys. Res. Lett., 35, L01703, https://doi.org/10.1029/2007GL031972.

    Article  Google Scholar 

  • Cullather, R. I., D. H. Bromwich, and M. C. Serreze, 2000: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part I: Comparison with observations and previous studies. J. Climate, 13, 923–937, http://dx.doi.org/10.1175/1520-0442(2000)013<0923:TAHCOT>2.0.CO;2.

    Article  Google Scholar 

  • Dacre, H. F., P. A. Clark, O. Martinez-Alvarado, M. A. Stringer, and D. A. Lavers, 2015: How do atmospheric rivers form? Bull. Amer. Meteor. Soc., 96, 1243–1255, http://dx.doi.org/10.1175/BAMS-D-14-00031.1.

    Article  Google Scholar 

  • Dickson, R. R., and Coauthors, 2000: The Arctic Ocean response to the North Atlantic oscillation. J. Climate, 13, 2671–2696, http://dx.doi.org/10.1175/1520-0442(2000)013<2671:TAORTT>2.0.CO;2.

    Article  Google Scholar 

  • Francis, J. A., and E. Hunter, 2006: New insight into the disappearing arctic sea ice. EOS, 87, 509–511, http://dx.doi.org/10.1029/2006EO460001.

    Article  Google Scholar 

  • Gong, T. T., S. Feldstein, and S. Lee, 2017: The role of downward infrared radiation in the recent arctic winter warming trend. J. Climate, 30, 4937–4949, http://dx.doi.org/10.1175/JCLID-16-0180.1.

    Article  Google Scholar 

  • Groves, D. G., and J. A. Francis, 2002: Moisture budget of the arctic atmosphere from TOVS satellite data. J. Geophys. Res., 107, ACL 11-1–ACL 11-21, http://dx.doi.org/10.1029/2001JD001191.

    Google Scholar 

  • Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers: Evaluation and application of an algorithm for global studies. J. Geophys. Res.: Atmos., 120, 12514–12535, http://dx.doi.org/10.1002/2015JD024257.

    Google Scholar 

  • Hurrell, J.W., 2015: Climate variability: North Atlantic and Arctic oscillation. Encyclopedia of Atmospheric Sciences. 2nd ed., G. R. North et al., Eds., Elsevier Ltd., 47–60.

    Chapter  Google Scholar 

  • Jakobson, E., and T. Vihma, 2010: Atmospheric moisture budget in the Arctic based on the ERA-40 reanalysis. International Journal of Climatology, 30, 2175–2194, http://dx.doi.org/10.1002/joc.2039.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–470, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    Article  Google Scholar 

  • Kay, J. E., and A. Gettelman, 2009: Cloud influence on and response to seasonal Arctic sea ice loss. J. Geophys. Res., 114, D18204, http://dx.doi.org/10.1029/2009JD011773.

    Article  Google Scholar 

  • Kay, J. E., T. L’Ecuyer, A. Gettelman, G. Stephens, and C. O’Dell, 2008: The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophys. Res. Lett., 35, L08503, http://dx.doi.org/10.1029/2008GL033451.

    Article  Google Scholar 

  • Kim, B.-M., and Coauthors, 2017: Major cause of unprecedented arctic warming in January 2016: Critical role of an Atlantic windstorm. Scientific Reports, 7, 40051, http://dx.doi.org/10.1038/srep40051.

    Article  Google Scholar 

  • Liu, C. J., and E. A. Barnes, 2015: Extreme moisture transport into the Arctic linked to Rossby wave breaking. J. Geophys. Res.: Atmos., 120, 3774–3788, http://dx.doi.org/10.1002/2014JD022796.

    Google Scholar 

  • Murray, R. J., and I. Simmonds, 1995: Responses of climate and cyclones to reductions in Arctic winter sea ice. J. Geophys. Res., 100, 4791–4806, http://dx.doi.org/10.1029/94JC02206.

    Article  Google Scholar 

  • Newell, R. E., N. E. Newell, Y. Zhu, and C. Scott, 1992: Tropospheric rivers? —A pilot study. Geophys. Res. Lett., 19, 2401–2404, http://dx.doi.org/10.1029/92GL02916.

    Article  Google Scholar 

  • Newman, M., G. N. Kiladis, K. M. Weickmann, F. M. Ralph, and P. D. Sardeshmukh, 2012: Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers. J. Climate, 25, 7341–7361, http://dx.doi.org/10.1175/JCLI-D-11-00665.1.

    Article  Google Scholar 

  • Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.

    Book  Google Scholar 

  • Ralph, F. M., and M. D. Dettinger, 2011: Storms, floods, and the science of atmospheric rivers. EOS, 92, 265–266, http://dx.doi.org/10.1029/2011EO320001.

    Article  Google Scholar 

  • Rogers, A. N., D. H. Bromwich, E. N. Sinclair, and R. I. Cullather, 2001: The atmospheric hydrologic cycle over the Arctic basin from reanalyses. Part II: Interannual variability. J. Climate, 14, 2414–2429, http://dx.doi.org/10.1175/1520-0442(2001)014<2414:TAHCOT>2.0.CO;2.

    Article  Google Scholar 

  • Sepp, M., and J. Jaagus, 2011: Changes in the activity and tracks of arctic cyclones. Climatic Change, 105, 577–595, http://dx.doi.org/10.1007/s10584-010-9893-7.

    Article  Google Scholar 

  • Serreze, M. C., R. G. Barry, and J. E. Walsh, 1995: Atmospheric water vapor characteristics at 70°N. J. Climate, 8, 719–731, http://dx.doi.org/10.1175/1520-0442(1995)008<0719:AWVCA>2.0.CO;2.

    Article  Google Scholar 

  • Simmonds, I., and K. Keay, 2009: Extraordinary September Arctic sea ice reductions and their relationships with storm behavior over 1979–2008. Geophys. Res. Let., 36, L19715, http://dx.doi.org/10.1029/2009GL039810.

    Article  Google Scholar 

  • Simmonds, I., C. Burke, and K. Keay, 2008: Arctic climate change as manifest in cyclone behavior. J. Climate, 21, 5777–5796, http://dx.doi.org/10.1175/2008JCLI2366.1.

    Article  Google Scholar 

  • Skific, N., J. A. Francis, and J. J. Cassano, 2009: Attribution of projected changes in atmospheric moisture transport in the Arctic: A self-organizing map perspective. J. Climate, 22, 4135–4153, http://dx.doi.org/10.1175/2009JCLI2645.1.

    Article  Google Scholar 

  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 4772–4784, http://dx.doi.org/10.1175/JCLI3885.1.

    Article  Google Scholar 

  • Taylor, W. A., 2015: Change-Point Analysis: A powerful new tool for detecting changes. Taylor Enterprises., [Available online from http://www.variation.com/cpa/tech/changepoint.html]

    Google Scholar 

  • Thompson, D. J. W., and J. M. Wallace, 1998: The Arctic oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, http://dx.doi.org/10.1029/98GL00950.

    Article  Google Scholar 

  • Vihma, T., and Coauthors, 2016: The atmospheric role in the Arctic water cycle: A review on processes, past and future changes, and their impacts. J. Geophys. Res.: Biogeosci., 121, 586–620, http://dx.doi.org/10.1002/2015JG003132.

    Article  Google Scholar 

  • Wang, X. J., and J. R. Key, 2005: Arctic surface, cloud, and radiation properties based on the AVHRR polar pathfinder dataset. Part II. Recent trends. J. Climate, 18, 2575–2593, https://doi.org/10.1175/JCLI3439.1.

    Article  Google Scholar 

  • Woods, C., and R. Caballero, 2016: The role of moist intrusions in winter Arctic warming and sea ice decline. J. Climate, 29, 4473–4485, http://dx.doi.org/10.1175/JCLI-D-15-0773.1.

    Article  Google Scholar 

  • Woods, C., R. Caballero, and G. Svensson, 2013: Large-scale circulation associated with moisture intrusions into the Arctic during winter. Geophys. Res. Lett., 40, 4717–4721, http://dx.doi.org/10.1002/grl.50912.

    Article  Google Scholar 

  • Yin, J. H., 2005: A consistent poleward shift of the storm tracks in simulations of 21st century climate. Geophys. Res. Lett., 32, L18701, http://dx.doi.org/10.1029/2005GL023684.

    Article  Google Scholar 

  • Zhang, X. D., J. E. Walsh, J. Zhang, U. S. Bhatt, and M. Ikeda, 2004: Climatology and interannual variability of Arctic cyclone activity: 1948–2002. J. Climate, 17, 2300–2317, http://dx.doi.org/10.1175/1520-0442(2004)017<2300:CAIVOA>2.0.CO;2.

    Article  Google Scholar 

  • Zhang, X. D., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, http://dx.doi.org/10.1029/2008GL035607.

    Article  Google Scholar 

  • Zhang, X. D., J. X. He, J. Zhang, I. Polyakov, R. Gerdes, J. Inoue, and P. L. Wu, 2012: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend. Nat. Clim. Change, 3, 47–51, http://dx.doi.org/10.1038/nclimate1631.

    Article  Google Scholar 

  • Zhu, Y., and R. E. Newell, 1998: A proposed algorithm for moisture fluxes from atmospheric rivers. Mon. Wea. Rev., 126, 725–735, http://dx.doi.org/10.1175/1520-0493(1998)126<0725:APAFMF>2.0.CO;2.

    Article  Google Scholar 

  • Zuidema, P., and Coauthors, 2005: An Arctic springtime mixedphase cloudy boundary layer observed during SHEBA. J. Atmos. Sci., 62, 160–176, http://dx.doi.org/10.1175/JAS-3368.1.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the editor, Dr. Tido SEMMLER, and the anonymous reviewers, for providing insightful suggestions and comments that have greatly improved the manuscript. This work was supported by the NSF (Grant Nos. ARC-1023592, ARC-1107509, and PLR-1304684). The computing resources were provided by the Arctic Region Supercomputing Center at the University of Alaska Fairbanks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian A. Villamil-Otero.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villamil-Otero, G.A., Zhang, J., He, J. et al. Role of extratropical cyclones in the recently observed increase in poleward moisture transport into the Arctic Ocean. Adv. Atmos. Sci. 35, 85–94 (2018). https://doi.org/10.1007/s00376-017-7116-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-017-7116-0

Key words

关键词

Navigation