Skip to main content
Log in

Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A parallel comparison is made of the circulation climatology and the leading oscillation mode of the northern winter stratosphere among six reanalysis products and 24 CMIP5 (Coupled Model Intercomparison Project Phase 5) models. The results reveal that the NCEP/NCAR, NECP/DOE, ERA40, ERA-Interim and JRA25 reanalyses are quite consistent in describing the climatology and annual cycle of the stratospheric circulation. The 20CR reanalysis, however, exhibits a remarkable “cold pole” bias accompanied by a much stronger stratospheric polar jet, similar as in some CMIP5 models. Compared to the 1–2 month seasonal drift in most coupled general circulation models (GCMs), the seasonal cycle of the stratospheric zonal wind in most earth system models (ESMs) agrees very well with reanalysis. Similar to the climatology, the amplitude of Polar Vortex Oscillation (PVO) events also varies among CMIP5 models. The PVO amplitude in most GCMs is relatively weaker than in reanalysis, while that in most of the ESMs is more realistic. In relation to the “cold pole” bias and the weaker oscillation in some CMIP5 GCMs, the frequency of PVO events is significantly underestimated by CMIP5 GCMs; while in most ESMs, it is comparable to that in reanalysis. The PVO events in reanalysis (except in 20CR) mainly occur from mid-winter to early spring (January–March); but in some of the CMIP5 models, a 1–2 month delay exists, especially in most of the CMIP5 GCMs. The long-term trend of the PVO time series does not correspond to long-term changes in the frequency of PVO events in most of the CMIP5 models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldwin, M. P., and T. J. Dunkerton, 1999: Propagation of the Arctic Oscillation from the stratosphere to the troposphere. J. Geophys. Res., 104, 30937–30946, doi:10.1029/1999jd900445.

    Article  Google Scholar 

  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581–584.

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land system model, Spectral Version 2: FGOALS-s2. Adv. Atmos. Sci., 30, 561–576, doi: 10.1007/s00376-012-2113-9.

    Article  Google Scholar 

  • Bentsen, M., and Coauthors, 2013: The Norwegian Earth System Model, NorESM1-M-Part 1: Description and basic evaluation of the physical climate. Geoscientific Model Development, 6, 687–720.

    Article  Google Scholar 

  • Cai, M., 2003: Potential vorticity intrusion index and climate variability of surface temperature. Geophys. Res. Lett., 30, 1119, doi:10.1029/2002GL015926.

    Article  Google Scholar 

  • Cai, M., and R. C. Ren, 2006: 40–70 day meridional propagation of global circulation anomalies. Geophys. Res. Lett., 33, L06818, doi:10.1029/2005GL025024.

    Google Scholar 

  • Cai, M., and R. C. Ren, 2007: Meridional and downward propagation of atmospheric circulation anomalies. Part I: Northern Hemisphere cold season variability. J. Atmos. Sci., 64, 1880–1901.

    Article  Google Scholar 

  • Charlton, A. J., and Coauthors, 2007: A new look at stratospheric sudden warmings. Part II: Evaluation of numerical model simulations. J. Climate, 20, 470–488.

    Article  Google Scholar 

  • Collins, M., S. F. B. Tett, and C. Cooper, 2001: The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Climate Dyn., 17, 61–81.

    Article  Google Scholar 

  • Compo, G. P., and Coauthors, 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597.

    Article  Google Scholar 

  • Donner, L. J., and Coauthors, 2011: The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL Global Coupled Model CM3. J. Climate, 24, 3484–3519.

    Article  Google Scholar 

  • Dufresne, J. L., and Coauthors, 2013: Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Climate Dyn., 40, 2123–2165.

    Article  Google Scholar 

  • Eyring, V., T. G. Shepherd, and D. W. Waugh, 2010: SPARC report on the evaluation of chemistry-climate models. SPARC report No. 5, WCRP-132, WMO/TD-No. 1526. [Available online at http://www.atmosp.physics.utoronto.ca/SPARC.]

    Google Scholar 

  • Gent, P. R., and Coauthors, 2011: The Community Climate System Model Version 4. J. Climate, 24, 4973–4991.

    Article  Google Scholar 

  • Giorgetta, M. A., and Coauthors, 2013: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. Journal of Advances in Modeling Earth Systems, 5, 572–597.

    Article  Google Scholar 

  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471.

    Article  Google Scholar 

  • Kanamitsu, M., W. Ebisuzaki, J. Woollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Amer. Meteor. Soc., 83, 1631–1643.

    Article  Google Scholar 

  • Kim, D., and Coauthors, 2012: The tropical subseasonal variability simulated in the NASA GISS general circulation model. J. Climate, 25, 4641–4659.

    Article  Google Scholar 

  • Kodera, K., K. Yamazaki, M. Chiba, and K. Shibata, 1990: Downward propagation of upper stratospheric mean zonal wind perturbation to the troposphere. Geophys. Res. Lett., 17, 1263–1266, doi: 10.1029/Gl017i009p01263.

    Article  Google Scholar 

  • Langematz, U., M. Kunze, K. Krüger, K. Labitzke, and G. L. Roff, 2003: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO2 changes. J. Geophys. Res., 108(D1), 4027, doi:10.1029/2002JD002069.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013: The Flexible Global Ocean-Atmosphere-Land system model, Grid-point Version 2: FGOALS-g2. Adv. Atmos. Sci., 30, 543–560, doi: 10.1007/s00376-012-2140-6.

    Article  Google Scholar 

  • Liu, Y. Z., R. C. Ren, and B. He, 2012: Comparison of SAMIL and BCC AGCM simulations of the polar vortex oscillation in the northern hemisphere winter. Chinese J. Atmos. Sci., 36, 1191–1206. (in Chinese)

    Google Scholar 

  • Manzini, E., B. Steil, C. Bruhl, M. A. Giorgetta, and K. Kruger, 2003: A new interactive chemistry-climate model: 2. Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling. J. Geophys. Res., 108, 4429, doi:10.1029/2002JD002977.

    Article  Google Scholar 

  • Marsh, D. R., M. J. Mills, D. E. Kinnison, J. F. Lamarque, N. Calvo, and L.M. Polvani, 2013: Climate change from 1850 to 2005 simulated in CESM1(WACCM). J. Climate, 26, 7372–7391.

    Article  Google Scholar 

  • Onogi, K., and Coauthors, 2007: The JRA-25 reanalysis. J. Meteor. Soc. Japan, 85, 369–432.

    Article  Google Scholar 

  • Pawson, S., and Coauthors, 2000: The GCM-Reality Intercomparison Project for SPARC (GRIPS): Scientific issues and initial results. Bull. Amer. Meteor. Soc., 81, 781–796.

    Article  Google Scholar 

  • Ramaswamy, V., M. D. Schwarzkopf, W. J. Randel, B. D. Santer, B. J. Soden, and G. L. Stenchikov, 2006: Anthropogenic and natural influences in the evolution of lower stratospheric cooling. Science, 311, 1138–1141.

    Article  Google Scholar 

  • Ramaswamy, V., and Coauthors, 2001: Stratospheric temperature trends: Observations and model simulations. Rev. Geophys., 39, 71–122, doi:10.1029/1999rg000065.

    Article  Google Scholar 

  • Randel, W. J., F. Wu, J. M. Russell, and J. Waters, 1999: Spacetime patterns of trends in stratospheric constituents derived from UARS measurements. J. Geophys. Res., 104, 3711–3727, doi:10.1029/1998jd100044.

    Article  Google Scholar 

  • Ren, R. C., and M. Cai, 2006: Polar vortex oscillation viewed in an isentropic potential vorticity coordinate. Adv. Atmos. Sci., 23, 884–900, doi: 10.1007/s00376-006-0884-6.

    Article  Google Scholar 

  • Ren, R. C., and M. Cai, 2007: Meridional and vertical out-of-phase relationships of temperature anomalies associated with the Northern Annular Mode variability. Geophys. Res. Lett., 34, L07704, doi:10.1029/2006GL028729.

    Google Scholar 

  • Ren, R. C., and Y. Yang, 2012: Changes in winter stratospheric cir culation in CMIP5 scenarios simulated by the climate system model FGOALS-s2. Adv. Atmos. Sci., 29, 1374–1389, doi: 10.1007/s00376-012-1184-y.

    Article  Google Scholar 

  • Ren, R. C., G. X. Wu, C. Ming, and J. J. Yu, 2009: Winter season stratospheric circulation in the SAMIL/LASG general circulation model. Adv. Atmos. Sci., 26, 451–464, doi: 10.1007/s00376-009-0451-z.

    Article  Google Scholar 

  • Rotstayn, L. D., M. A. Collier, M. R. Dix, F. Yan, H. B. Gordon, S. P. O’farrell, I. N. Smith, and J. Syktus, 2009: Improved simulation of Australian climate and ENSO-related rainfall variability in a global climate model with an interactive aerosol treatment. Int. J. Climatol., 30, 1067–1088.

    Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498.

    Article  Google Scholar 

  • Thompson, D. W. J., and J. M. Wallace, 1998: The Arctic Oscillation signature in the wintertime geopotential height and temperature fields. Geophys. Res. Lett., 25, 1297–1300, doi: 10.1029/98gl00950.

    Article  Google Scholar 

  • Thompson, D. W. J., M. P. Baldwin, and J. M. Wallace, 2002: Stratospheric connection to Northern Hemisphere wintertime weather: Implications for prediction. J. Climate, 15, 1421–1428.

    Article  Google Scholar 

  • Uppala, S. M., and Coauthors, 2005: The ERA-40 re-analysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012.

    Article  Google Scholar 

  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 2091–2121.

    Article  Google Scholar 

  • Volodin, E. M., N. A. Dianskii, and A. V. Gusev, 2010: Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya, Atmospheric and Oceanic Physics, 46, 414–431.

    Article  Google Scholar 

  • Watanabe, M., and Coauthors, 2010: Improved climate simulation by MIROC5: Mean states, variability, and climate sensitivity. J. Climate, 23, 6312–335.

    Article  Google Scholar 

  • Wu, T. W., and Coauthors, 2013: Global carbon budgets simulated by the Beijing Climate Center Climate System Model for the last century. J. Geophys. Res., 118, 4326–4347, doi: 10.1002/jgrd.50320.

    Google Scholar 

  • Xin, X., T. Wu, and J. Zhang, 2013: Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Advances in Climate Change Research, 4, 41–9.

    Article  Google Scholar 

  • Yukimoto, S., and Coauthors, 2012: A new global climate model of the meteorological research institute: MRI-CGCM3, model description and basic performance. J. Meteor. Soc. Japan, 90A, 23–64.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rongcai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, J., Ren, R. & Yang, Y. Parallel comparison of the northern winter stratospheric circulation in reanalysis and in CMIP5 models. Adv. Atmos. Sci. 32, 952–966 (2015). https://doi.org/10.1007/s00376-014-4192-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-014-4192-2

Key words

Navigation