Skip to main content
Log in

GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria

  • Original Paper
  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Remote sensing of atmospheric water vapor using global positioning system (GPS) data has become an effective tool in meteorology, weather forecasting and climate research. This paper presents the estimation of precipitable water (PW) from GPS observations and meteorological data in Algeria, over three stations located at Algiers, Bechar and Tamanrasset. The objective of this study is to analyze the sensitivity of the GPS PW estimates for the three sites to the weighted mean temperature (T m), obtained separately from two types of T mT s regression [one general, and one developed specifically for Algeria (T s stands for surface temperature)], and calculated directly from ERA-Interim data. The results show that the differences in T m are of the order of 18 K, producing differences of 2.01 mm in the final evaluation of PW. A good agreement is found between GPS-PW and PW calculated from radiosondes, with a small mean difference with Vaisala radiosondes. A comparison between GPS and ERA-Interim shows a large difference (4 mm) in the highlands region. This difference is possibly due to the topography. These first results are encouraging, in particular for meteorological applications in this region, with good hope to extend our dataset analysis to a more complete, nationwide coverage over Algeria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Askne, J., and H. Nordius, 1987: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci., 22, 379–386, doi: 10.1029/RS022i003p00379.

    Article  Google Scholar 

  • Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A. Anthes, and R. H. Ware, 1992: GPS meteorology: Remote sensing of atmospheric water vapor using the global positioning system. J. Geophys. Res., 97, 15 787–15 801, doi: 10.1029/92 JD01517.

    Google Scholar 

  • Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994: GPS Meteorology: Mapping zenith wet delays onto precipitable water. J. Appl. Meteor., 33, 379–386.

    Article  Google Scholar 

  • Bock, O., and Coauthors, 2013: Accuracy assessment of water vapour measurements from in situ and remote sensing techniques during the DEMEVAP 2011 campaign at OHP. Atmospheric Measurement Techniques, 6, 2777–2802, doi: 10.5194/amt-6-2777-2013.

    Article  Google Scholar 

  • Boutiouta, S., and A. Lahcene, 2013: Preliminary study of GNSS meteorology techniques in Algeria. Int. J. Remote Sens., 34, 5105–5118.

    Article  Google Scholar 

  • Brenot, H., V. Ducrocq, A. Walpersdorf, C. Champollion, and O. Caumont, 2006: GPS zenith delay sensitivity evaluated from high-resolution numerical weather prediction simulations of the 8-9 September 2002 flash flood over southeastern France. J. Geophys. Res., 111, doi: 10.1029/2004JD005726.

  • Businger, S., Chiswell, S. R., Ulmer, W. C., and Johnson, R., 1996: Balloons as a Lagrangian measurement platform for atmospheric research. J. Geophys. Res, 101, doi: 10.1029/95JD 00559.

  • Davis, J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, 1985: Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci., 20, 1593–1607, doi: 10.1029/RS020i006p01593.

    Article  Google Scholar 

  • Dee, D. P., and Coauthors 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteorol. Soc., 137, 553–597. doi: 10.1002/ qj.828.

    Article  Google Scholar 

  • Duan J., and Coauthors, 1996: GPS meteorology: Direct estimation of the absolute value of precipitable water. J. Appl. Meteorol., 35, 830–838.

    Article  Google Scholar 

  • Elliott, W. P., 1995: On detecting long-term changes in atmospheric moisture. Climatic Change, 31, 349–367, doi: 10.1007/BF01095152.

    Article  Google Scholar 

  • Fernández, L. I., P. Salio, M. P. Natali, and A. M. Meza, 2010: Estimation of precipitable water vapour from GPS measurements in Argentina: Validation and qualitative analysis of results. Advances in Space Research, 46, 879–894, doi: 10.1016/j.asr. 2010.05.012.

    Article  Google Scholar 

  • Guerova, G., E. Brockmann, J. Quiby, F. Schubiger, and C. Matzler, 2003: Validation of NWP mesoscale models with Swiss GPS network AGNES. J. Appl. Meteor., 42, 141–150.

    Article  Google Scholar 

  • Guerova, G., and Coauthors, 2016: Review of the state of the art and future prospects of the ground-based GNSS meteorology in Europe. Atmospheric Measurement Techniques, 9, 5385–5406.

    Article  Google Scholar 

  • Kos, T., M. Botinčan, and A. Dlesk, 2009: Mitigating GNSS Positioning Errors due to Atmospheric Signal Delays. Pomorstvo, 23, 495–513.

    Google Scholar 

  • Mengistu Tsidu, G., T. Blumenstock, and F. Hase, 2015: Observations of precipitable water vapour over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmospheric Measurement Techniques, 8, 3277–3295, doi: 10.5194/amt-8-3277-2015.

    Article  Google Scholar 

  • Nash, J., T. Oakley, H. Vömel, and L. I. Wei, 2011: WMO intercomparison of high quality radiosonde systems, Yangjiang, China, 12 July–3 August 2010. IOM Rep. 107, WMO/TD 1580, World Meteorological Organization, 238 pp.

    Google Scholar 

  • Niell, A. E., 1996: Global mapping functions for the atmosphere delay at radio wavelengths. J. Geophys. Res., 101, 3227–3246.

    Article  Google Scholar 

  • Rocken, C., T. Van Hove, and R. Ware, 1997: Near real-time GPS sensing of atmospheric water vapor. Geophys. Res. Lett., 24, 3221–3224.

    Article  Google Scholar 

  • Saastamoinen, J., 1972: Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. The Use of Artificial Satellites for Geodesy, S. W. Henriksen, A. Mancini, and B. H. Chovitz, AGU, Washington, D.C., 247–251.

    Google Scholar 

  • Sapucci, L. F., 2014: Evaluation of modeling water-vaporweighted mean tropospheric temperature for GNSS-integrated water vapor estimates in Brazil. Journal of Applied Meteorology and Climatology, 53, 715–730, doi: 10.1175/JAMCD-13-048.1.

    Article  Google Scholar 

  • Teregoning, P., Boers, R. O’Brier, D., Hendy, M., 1998: Accuracy of absolute precipitable water vapor estimates from GPS observations. J. Geophys. Res.: Atmopsheres, 103, 28.

    Google Scholar 

  • Thayer, G. D., 1974: An improved equation for the radio refractive index of air. Radio Sci., 9, 803–807.

    Article  Google Scholar 

  • Torres, B., V. E. Cachorro, C. Toledano, J. P. Ortiz de Galisteo, A. Berjón, A. M. de Frutos, Y. Bennouna, and N. Laulainen, 2010: Precipitable water vapor characterization in the Gulf of Cadiz region (southwestern Spain) based on Sun photometer, GPS, and radiosonde data. J. Geophys. Res., 115, doi: 10.1029/2009JD012724.

  • Van Malderen, R., and Coauthors, 2014: A multi-site intercomparison of integrated water vapour observations for climate change analysis. Atmospheric Measurement Techniques, 7, 2487–2512, doi: 10.5194/amt-7-2487-2014.

    Article  Google Scholar 

  • Vey, S., R. Dietrich, M. Fritsche, A. Rülke, P. Steigenberger, and M. Rothacher, 2009: On the homogeneity and interpretation of precipitable water time series derived from global GPS observations. J. Geophys. Res., 114, doi: 10.1029/2008JD 010415.

  • Wang, J. H., and L. Y. Zhang, 2008: Systematic errors in global radiosonde precipitable water data from comparisons with ground-based GPS measurements. J. Climate, 21, 2218–2238, doi: 10.1175/2007JCLI1944.1.

    Article  Google Scholar 

  • Ware, R. H., and Coauthors, 2000: Suominet: A real-time national GPS network for atmospheric research and education. Bull. Amer. Meteor. Soc., 81, 677–694.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Institute of Cartography and Remote Sensing and the Algerian Research Center for Astronomy, Astrophysics and Geophysics, for providing the GPS data. We are also grateful to Mr Larry OOLMAN from the University of Wyoming for making available the archive data of weather stations in Algeria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houaria Namaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namaoui, H., Kahlouche, S., Belbachir, A.H. et al. GPS water vapor and its comparison with radiosonde and ERA-Interim data in Algeria. Adv. Atmos. Sci. 34, 623–634 (2017). https://doi.org/10.1007/s00376-016-6111-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-016-6111-1

Key words

Navigation