Skip to main content

Advertisement

Log in

Spatial–temporal variations of water vapor content over Ethiopia: a study using GPS observations and the ECMWF model

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

We characterize the spatial–temporal variability of integrated water vapor (IWV) in Ethiopia from a network of global positioning system (GPS) stations and the European Center for Medium range Weather Forecasting (ECMWF) model. The IWV computed from the ECMWF model is integrated from the height of the GPS stations on 60 pressure levels to take both the actual earth surface and the model orography discrepancies into account. First, we compare the IWV estimated from GPS and from the model. The bias varies from site to site, and the correlation coefficients between the two datasets exceed 0.85 at different time scales. The results of this study show that the general ECMWF IWV trend is underestimation over highlands and overestimation over lowlands for wet periods, and overestimation over highlands and underestimation over lowlands for dry periods with very few exceptional stations. Second, we observe the spatial variation of the IWV. High values are obtained in those stations that are located in the north-eastern (Afar depression) sites and the south-western part of the country. This distribution is related to the spatial variability of the climate in Ethiopia. Finally, we study the seasonal cycle and inter-annual variability of IWV for all stations over Ethiopia. The main result is the strong inter-annual variability observed for the dry seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97:15787–15801

    Article  Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • BocK O, Guichard F, Janicot S, Lafore JP, Bouin MN (2007) Sultan B (2007) Multiscaleanalysis of precipitable water vapor over Africa from GP data and ECMWF analyses. Geophys Res Lett 34:L09705. doi:10.1029/2006GL028039

    Article  Google Scholar 

  • Bock O, Bouin MN, Doerflinger E, Collard P, Masson F, Meynadier R, Nahmani S, Koité MK, Balawan GL, Didé F, Ouedraogo D, Pokperlaar S, Ngamini JB, Lafore JP, Janicot S, Guichard F, Nuret M (2008) West African monsoon observed with ground-based GPS receivers during African monsoon multidisciplinary analysis (AMMA). J Geophys Res 113:D21105. doi:10.1029/2008JD010327

    Article  Google Scholar 

  • Boehm J, Heinkelmann R, Schuh H (2007) A global model of pressure and temperature for geodetic applications. J Geod 81:679–683. doi:10.1007/s00190-007-0135-3

    Article  Google Scholar 

  • Boniface K, Ducrocq V, Jaubert G, Yan X, Brousseau P, Masson F, Champollion C, Chery J, Doerflinger E (2009) Impact of high-resolution data assimilation of GPS Zenith delay on mediterranean heavy rainfall forecasting. Ann Geophys 27:2739–2753

    Article  Google Scholar 

  • Braun JJ (2004) Remote sensing of atmospheric water vapor with the global positioning system. Dissertation, Department of Aerospace Engineering Sciences, University of Colorado

  • Champollion C, Masson F, Van Baelen J, Walpersdorf A, Chéry J, Doerflinger E (2004) GPS monitoring of the tropospheric water vapor distribution and variation during the 9 September 2002 torrential precipitation episode in the Ce´vennes (southern France). J Geophys Res 109:D24102. doi:10.1029/2004JD004897

    Article  Google Scholar 

  • Cucurull L, Vandenberge F, Barker D, Vilaclara E, Rius A (2004) Three dimensional variational data assimilation of ground-based GPS ZTD and meteorological observations during the 14 December 2001 storm event over the western Mediterranean sea. Monsoon Weather Rev 132(3):749–763

    Article  Google Scholar 

  • Dai A, Wang J, Ware RH, Van Hove T (2002) Diurnal variation in water vapor over North America and its implications for sampling errors in radiosonde humidity. J Geophys Res 107:4090. doi:10.1029/2001JD000642

    Article  Google Scholar 

  • Dawit A (2010) Future climate of Ethiopia from PRECIS Regional Climate Model Experimental Design. http://www.metoffice.gov.uk

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. doi:10.1002/Qj.828

    Article  Google Scholar 

  • Diro GT, Toniazzo T, Shaffrey L (2008) Ethiopian rainfall in climate models. Afr Clim Clim Change 51–69

  • Duan J, Bevis M, Fang P, Bock Y, Chiswell S, Businger S, Rocken C, Solheim F, van Hove T, Ware R et al (1996) GPS meteorology: direct estimation of the absolute value of precipitable water. J Appl Meteorol 35(6):830–838

    Article  Google Scholar 

  • Elgered G, Davis JL, Herring TA, Shapiro II (1991) Geodesy by radio interferometry: water vapor radiometry for estimation of the wet delay. J Geophys Res 96(B4):6541–6555. doi:10.1029/90JB00834

    Article  Google Scholar 

  • Haase J, Ge MR, Vedel H, Calais E (2003) Accuracy and variability of GPS tropospheric delay measurements of water vapor in the western Mediterranean. J Appl Meteorol 42(11):1547–1568

    Article  Google Scholar 

  • Hagemann S, Bengtsson L, Gendt G (2003) On the determination of atmospheric water vapor from GPS measurements. J Geophys Res 108(D21):4678. doi:10.1029/2002JD003235

    Article  Google Scholar 

  • Hally A, Richard E, Fresnay S, Lambert D (2013) Ensemble simulations with perturbed physical parametrizations: pre-HyMeX case studies. Royal Meteorological Society

  • Herring TA, King RW, McClusky SC (2010) GAMIT reference manual, GPS analysis at MIT—release 10.4. Department of Earth, Atmospheric, and Planetary Science, MIT, USA

  • Hortal M, Simmons AJ (1991) Use of reduced Gaussian grids in spectral models. Monsoon Weather Rev 119:1057–1074

    Article  Google Scholar 

  • Koulali A, Ouazar D, Bock O, Fadil A (2012) Study of seasonal-scale atmospheric water cycle with ground-based GPS receivers, radiosondes and NWP models over Morocco. Atmos Res 104–105:273–291. doi:10.1016/j.atmosres.2011.11.002

    Article  Google Scholar 

  • Mengistu TG (2012) High-resolution monthly rainfall database for Ethiopia: homogenization, reconstruction, and gridding. J Climate 25(8422–8443):2012

    Google Scholar 

  • Mengistu TG, Blumenstock T, Hase F (2014) Observations of precipitable water vapor over complex topography of Ethiopia from ground-based GPS, FTIR, radiosonde and ERA-Interim reanalysis. Atmos Meas Tech Discuss 7:9869–9915. www.atmos-meas-tech-discuss.net/7/9869/2014/. doi:10.5194/amtd-7-9869-2014

  • Ohtani R, Naito I (2000) Comparisons of GPS-derived precipitable water vapors with radiosonde observations in Japan. J Geophys Res 105:26917–26929

    Article  Google Scholar 

  • Rocken C, Van Hove T, Ware RH (1997) Near real-time GPS sensing of atmospheric water vapor. Geophys Res Lett 24:3221–3224

    Article  Google Scholar 

  • Tregoning P, Boers R, O’Brien D, Hendy M (1998) Accuracy of absolute precipitable water vapor estimates from GPS observations. J Geophys Res 103:28701–28710

    Article  Google Scholar 

  • Viste E, Sorteberg A (2011) Moisture transport into the Ethiopian highlands. Int J Climatol. doi:10.1002/joc.3409

    Google Scholar 

  • Yan X (2009) Assimilation de données GPS pour la prévision de la convection profonde. Dissertation, Universite de Toulouse

Download references

Acknowledgments

We thank all the participants of the measurement campaigns and the teams involved in making the data available. We are particularly grateful to our colleagues from the Institute of Geophysics, Space Sciences and Astronomy from the Addis Ababa University and from the Centre d’Etudes et de Recherches Djiboutiennes and the Observatoire Géophysique d’Arta (www.oga.dj). Thanks in particular to Patrice Ulrich. This work was supported by the CNES-TOSCA and by the Agence Nationale pours la Recherche, in the framework of the Project DoRA ANR-09-JCJC-0051-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kibrom Ebuy Abraha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraha, K.E., Lewi, E., Masson, F. et al. Spatial–temporal variations of water vapor content over Ethiopia: a study using GPS observations and the ECMWF model. GPS Solut 21, 89–99 (2017). https://doi.org/10.1007/s10291-015-0508-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10291-015-0508-7

Keywords

Navigation