Skip to main content
Log in

Paleoclimate simulations of the mid-Holocene and last glacial maximum by FGOALS

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets.

For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7°C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6°C and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23°C and 4.59°C. The sensitivity of precipitation to the changes of TAS is ∼2.3% °C−1, which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-g1.0; however, it is hard to conclude any improvements for the LGM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argus, D. F., and W. R. Peltier, 2010: Constraining models of postglacial rebound using space geodesy: A detailed assessment of model ICE-5G (VM2) and its relatives. Geophysical Journal International, 181, 697–723.

    Google Scholar 

  • Bao, Q., G. Wu, Y. Liu, J. Yang, Z. Wang, and T. Zhou, 2010: An introduction to the coupled model FGOALS1.1-s and its performance in East Asia. Adv. Atmos. Sci., 27, 1131–1142, doi: 10.1007/s00376-010-9177-1

    Article  Google Scholar 

  • Bao, Q., and Coauthors, 2013: The flexible global oceanatmosphere-land system model, spectral version 2: FGOALS-s2. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2113-9.

    Google Scholar 

  • Barker, S., I. Cacho, H. Benway, and K. Tachikawa, 2005: Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures: A methodological overview and data compilation for the last glacial maximum. Quaternary Science Reviews, 24, 821–834.

    Article  Google Scholar 

  • Bartlein, P., and Coauthors, 2011: Pollen-based continental climate reconstructions at 6 and 21 ka: A global synthesis. Climate Dyn., 37, 775–802.

    Article  Google Scholar 

  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climatic changes. J. Atmos. Sci., 35, 2362–2367.

    Article  Google Scholar 

  • Bigelow, N. H., and Coauthors, 2003: Climate change and Arctic ecosystems: 1. Vegetation changes north of 55°N between the last glacial maximum, midholocene, and present. J. Geophys. Res., 108, 8170, doi: 10.1029/2002JD002558.

    Article  Google Scholar 

  • Braconnot, P., O. Marti, S. Joussaume, and Y. Leclainche, 2000: Ocean feedback in response to 6 kyr BP insolation. J. Climate, 13, 1537–1553.

    Article  Google Scholar 

  • Braconnot, P., and Coauthors, 2007: Results of PMIP2 coupled simulations of the mid-holocene and last glacial maximum-Part 1: Experiments and largescale features. Climate of the Past, 3, 261–277.

    Article  Google Scholar 

  • Briegleb, B. P., C. M. Bitz, E. C. Hunke, W. H. Lipscomb, M. M. Holland, J. L. Schramm, and R. E. Moritz, 2004: Scientific description of the sea ice component in the community climate system model, version three. NCAR Tech. Note NCAR/TN-463+STR, 70pp.

    Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2001: Ocean turbulence. Part I: Onepoint closure model, momentum and heat vertical diffusivities. J. Phys. Oceanogr., 31, 1413–1426.

    Article  Google Scholar 

  • Canuto, V. M., A. Howard, Y. Cheng, and M. S. Dubovikov, 2002: Ocean turbulence. Part II: Vertical diffusivities of momentum, heat, salt, mass, and passive scalars. J. Phys. Oceanogr., 32, 240–264.

    Article  Google Scholar 

  • Craig, A. P., and Coauthors, 2005: CPL6: The new extensible, high performance parallel coupler for the community climate system model. International Journal of High Performance Computing Applications, 19, 309–327.

    Article  Google Scholar 

  • Curry, W. B., and G. P. Lohmann, 1982: Carbon isotopic changes in benthic foraminifera from the western South Atlantic: Reconstruction of glacial abyssal circulation patterns. Quaternary Research, 18, 218–235.

    Article  Google Scholar 

  • Dahl-Jensen, D., K. Mosegaard, N. Gundestrup, G. D. Clow, S. J. Johnsen, A. W. Hansen, and N. Balling, 1998: Past temperatures directly from the Greenland ice sheet. Science, 282, 268–271.

    Article  Google Scholar 

  • Duplessy, J. C., G. Delibrias, J. L. Turon, C. Pujol, and J. Duprat, 1981: Deglacial warming of the northeastern Atlantic ocean: Correlation with the paleoclimatic evolution of the european continent. Palaeogeography, Palaeoclimatology, Palaeoecology, 35, 121–144.

    Article  Google Scholar 

  • Gregory, J. M., and Coauthors, 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205, doi: 10.1029/2003GL018747.

    Article  Google Scholar 

  • IPCC, 2007: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, S. Solomon et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 996pp.

  • Joussaume, S., and Coauthors, 1999: Monsoon changes for 6000 years ago: Results of 18 simulations from the paleoclimate modeling intercomparison project (PMIP). Geophys. Res. Lett., 26, 859–862.

    Article  Google Scholar 

  • Lambeck, K., A. Purcell, J. Zhao, and N.-O. Svensson, 2010: The Scandinavian ice sheet: From MIS 4 to the end of the last glacial maximum. Boreas, 39, 410–435, doi: 410.1111/j.1502-3885.2010.00140.x.

    Article  Google Scholar 

  • Lawrence, M. G., 2005: The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Amer. Meteor. Soc., 86, 225–233.

    Article  Google Scholar 

  • Lézine, A. M., W. Zheng, P. Braconnot, and G. Krinner, 2011: Late holocene plant and climate evolution at Lake Yoa, northern Chad: Pollen data and climate simulations. Climate of the Past, 7, 1351–1362.

    Article  Google Scholar 

  • Li, L. J., and Coauthors, 2013a: Evaluation of grid-point atmospheric model of IAP LASG, version 2.0 (GAMIL 2.0). Adv. Atmos. Sci., doi: 10.1007/s00376-013-2157-5.

    Google Scholar 

  • Li, L. J., and Coauthors, 2013b: The flexible global ocean-atmosphere-land system model: Version g2: FGOALS-g2. Adv.Atmos. Sci., doi: 10.1007/s00376-012-2140-6.

    Google Scholar 

  • Liu, H. L., P. F. Lin, Y. Q. Yu, and X. H. Zhang, 2012: The baseline evaluation of LASG/IAP climate system ocean model (LICOM) version 2.0. Acta Meteorologica Sinica, 26, 318–329.

    Article  Google Scholar 

  • Lin, P., Y. Yu, and H. Liu, 2013a: Long-term stability and oceanic mean state simulated by the coupled model FGOALS-s2, Adv. Atmos. Sci., 30, 175–192, doi: 10.1007/s00376-012-2042-7.

    Article  Google Scholar 

  • Lin, P., Y. Yu, and H. Liu, 2013b: Oceanic climatology in the coupled model FGOALS-g2: Improvements and biases. Adv. Atmos. Sci., doi: 10.1007/s00376-012-2137-1.

    Google Scholar 

  • Lynch-Stieglitz, J., and Coauthors, 2007: Atlantic meridional overturning circulation during the last glacial maximum. Science, 316, 66–69.

    Article  Google Scholar 

  • Oleson, K. W., and Coauthors, 2004: Technical description of the community land model (CLM). NCAR Tech. Note TN-461+STR, 174pp.

    Google Scholar 

  • Pacanowski, R., and S. Philander, 1981: Parameterization of vertical mixing in numerical models of tropical oceans. J. Phys. Oceanogr., 11, 1443–1451.

    Article  Google Scholar 

  • Prentice, I. C., D. Jolly, and B. participants, 2000: Midholocene and glacial-maximum vegetation geography of the northern continents and Africa. Journal of Biogeography, 27, 507–519.

    Article  Google Scholar 

  • Ramaswamy, V., and Coauthors, 2001: Radiative forcing of climate. Climate Change 2001. The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 349–416.

    Google Scholar 

  • Stenni, B., and Coauthors, 2001: An oceanic cold reversal during the last deglaciation. Science, 293, 2074–2077.

    Article  Google Scholar 

  • Tarasov, L., and W. R. Peltier, 2004: A geophysically constrained large ensemble analysis of the deglacial history of the North American ice-sheet complex. Quaternary Science Reviews, 23, 359–388.

    Article  Google Scholar 

  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, cited 2009: A summary of the CMIP5 experiment design. [Available online at http://cmip-pcmdi.llnl.gov/cmip5/docs/Taylor CMIP5 design.pdf.]

    Google Scholar 

  • Wang, X. C., J. P. Liu, Y. Q. Yu, and H. L. Liu, 2010: Experiment of coupling sea ice mode CICE4 to LASG/IAP climate system model. Chinese J. Atmos. Sci., 34, 780–792. (in Chinese)

    Google Scholar 

  • Wu, G., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 8, 770–789.

    Article  Google Scholar 

  • Yu, E.-F., R. Francois, and M. P. Bacon, 1996: Similar rates of modern and last-glacial ocean thermohaline circulation inferred from radiochemical data. Nature, 379, 689–694.

    Article  Google Scholar 

  • Yu, Y., W. Zheng, B. Wang, H. Liu, and J. Liu, 2011: Versions g1.0 and g1.1 of the LASG/IAP flexible global ocean-atmosphere-land system model. Adv. Atmos. Sci., 28, 99–117, doi: 10.1007/s00376-010-9112-5.

    Article  Google Scholar 

  • Yu, Y., and Coauthors, 2008: Coupled model simulations of climate changes in the 20th century and beyond. Adv. Atmos. Sci., 25, 641–654, doi: 10.1007/s00376-008-0641-0.

    Article  Google Scholar 

  • Zheng, W., and Y. Yu, 2009: The Asian monsoon system of the mid-Holocen simulated by a coupled GCM. Quaternary Sciences, 29, 1135–1145. (in Chinese)

    Google Scholar 

  • Zheng, W., and P. Braconnot, 2012: Characterization of model spread in PMIP2 mid-holocene simulations of the African monsoon. J. Climate, 26, 1192–1210.

    Article  Google Scholar 

  • Zheng, W., P. Braconnot, G. E., M. U., and Y. Yu, 2008: ENSO at 6 ka and 21 ka from ocean-atmosphere coupled model simulations. Climate Dyn., 30, 745–762.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weipeng Zheng  (郑伟鹏).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, W., Yu, Y. Paleoclimate simulations of the mid-Holocene and last glacial maximum by FGOALS. Adv. Atmos. Sci. 30, 684–698 (2013). https://doi.org/10.1007/s00376-012-2177-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-012-2177-6

Key words

Navigation