Skip to main content
Log in

Parameterization of heat fluxes at heterogeneous surfaces by integrating satellite measurements with surface layer and atmospheric boundary layer observations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The regional heat flux exchange between heterogeneous landscapes and the nearby surface layer (SL) is a key issue in the study of land-atmosphere interactions over arid areas such as the Heihe River basin in northwestern China and in high elevation areas such as the Tibetan Plateau. Based on analysis of the land surface heterogeneity and its effects on the overlying air flow, the use of SL observations, atmospheric boundary layer (ABL) observations, and satellite remote sensing (RS) measurements along with three parameterization methodologies (here, termed as the RS, tile, and blending approaches) have been proposed to estimate the surface heat flux densities over heterogeneous landscapes. The tile and blending approaches have also been implemented during HEIhe basin Field Experiment (HEIFE), the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project on the Tibetan Plateau (CAMP/Tibet), the Arid Environment Comprehensive Monitoring Plan’ 95 (AECMP′95), and the DunHuang Experiment (DHEX). The results showed that these two proposed parameterization methodologies can be accurately used over heterogeneous land surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avissar, R., 1995: Scaling of land-atmosphere interactions: An atmospheric modelling perspective. Hydrological Processes, 9, 679–695.

    Article  Google Scholar 

  • Avissar, R., and R. A. Pielke, 1989: A parameterization of heterogeneous land surfaces for atmospheric numerical models and it impact on regional meteorology. Mon. Wea. Rev., 117, 2113–2136.

    Article  Google Scholar 

  • Bache, D. H., 1986: On the theory of gaseous transport to plant canopies. Atmos. Environ., 20, 1379–1388.

    Article  Google Scholar 

  • Bastiaanssen, W. G. M., 1995: Regionalization of surface fluxes and moisture indicators in composite terrain. Ph.D. dissertation, Wageningen Agricultural University, the Netherlands, 273pp.

    Google Scholar 

  • Brutsaert, W., 1984: Evaporation into the Atmosphere-Theory, History, and Applications. Kluwer Academic Publishers, Dordrecht, the Netherlands, 299pp.

    Google Scholar 

  • Claussen, M., 1991: Estimation of areally averaged surface fluxes. Bound.-Layer Meteor., 54, 387–410.

    Article  Google Scholar 

  • Deardorff, J. W., 1978: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903.

    Article  Google Scholar 

  • Gao, F., J. Masek, M. Schwaller, and F. Hal, 2006: On the blending of the Landsat and MODIS surface reflectance: Predicting daily Landsat surface reflectance. IEEE Trans. Geosci. Remote Sens., 44(8), 2207–2218.

    Article  Google Scholar 

  • Hunten, D. M., 1975: Vertical transport in atmospheres. Atmospheres of Earth and the Planets, B. M. McCormac, Ed., D. Reidel Publishing Co., Dordrecht, 59–72.

    Google Scholar 

  • Jia, L., and Coauthors, 2003: Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth, 28, 75–88.

    Google Scholar 

  • Ma, Y., 2003: Remote sensing parameterization of regional net radiation over heterogeneous land surface of GAME/Tibet and HEIFE. International Journal of Remote Sensing, 24(15), 3137–3148.

    Article  Google Scholar 

  • Ma, Y., and Coauthors, 2003: Remote sensing parameterization of land surface heat fluxes over arid and semi-arid areas. Adv. Atmos. Sci., 20(4), 530–539.

    Article  Google Scholar 

  • Ma, Y., and Coauthors, 2005: Diurnal and inter-monthly variation of land surface heat fluxes over the central Tibetan Plateau area. Theoretical and Applied Climatology, 80, 259–273.

    Article  Google Scholar 

  • Ma, Y., L. Zhong, Z. Su, H. Ishikawa, M. Menenti, and T. Koike, 2006: Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Ehanced Thematic Mapper data over the central Tibetan Plateau area. J. Geophys. Res., 111(D10305), doi: 10.1029/2005JD006742.

  • Mason, P., 1988: The formation of areally averaged roughness lengths. Quart. J. Roy. Meteor. Soc., 114, 399–420.

    Article  Google Scholar 

  • Montheith, J. L., 1973: Principles of Environmental Physics. Edward Aarnold, London, 241pp.

    Google Scholar 

  • Philpot, W., 2007: Estimating atmospheric transmission and surface reflectance from a glint-contaminated spectral image. IEEE Trans. Geosci. Remote Sens., 45(2), 448–456.

    Article  Google Scholar 

  • Raupach, M. R., and J. J. Finnigan, 1995: Scale issues in boundary-layer meteorology: Surface energy balances in heterogeneous terrain. Hydrological Processes, 9, 589–612.

    Article  Google Scholar 

  • Su, Z, 2002: The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology Earth System Sciences, 6(1), 85–99.

    Google Scholar 

  • Su, Z, H. Pelgrum, and M. Menenti, 1999: Aggregation effects of surface heterogeneity in land surface processes. Hydrology Earth System Sciences, 3, 549–563.

    Article  Google Scholar 

  • Wang, J., Y. Ma, M. Menenti, and W. G. M. Bastiaanssen, 1995: The scaling-up of processes in the heterogeneous landscape of HEIFE with the aid of satellite remote sensing. J. Meteor. Soc. Japan, 73(6), 1235–1244.

    Google Scholar 

  • Wen, J., 1999: Land surface variables estimated from remote sensing and the correction of atmospheric effects. Ph.D. dissertation, Lanzhou Institute of Plateau Atmospheric Physics, the Chinese Academy of Sciences, Lanzhou, China, 115pp.

    Google Scholar 

  • Wieringa, J., 1986: Roughness-dependent geographical interpolation of surface wind speed averages. Quart. J. Roy. Meteor. Soc., 112, 867–889.

    Article  Google Scholar 

  • Xue, Y., and J. Shukla, 1993: The influence of surface properties on Sahel climate. Part I: desertification. J. Climate, 6, 2232–2245.

    Article  Google Scholar 

  • Yang, P, R. Shibasaki, W. Wu, Q. Zhou, Z. Chen, Y. Zha, Y. Shi, and H. Tang, 2007: Evaluation of MODIS land cover and LAI products in cropland of North China plain using in situ measurements and Landsat TM images. IEEE Trans. Geosci. Remote Sens., 45(11), 3087–3097.

    Article  Google Scholar 

  • Yu, Y., J. L. Privette, and A. C. Pinheiro, 2008: Evaluation of split-window land surface temperature algorithms for generating climate data records. IEEE Trans. Geosci. Remote Sens., 46(1), 179–192.

    Article  Google Scholar 

  • Zhang, Q., R. Huang, and H. Tian, 2003a: The study on parameterization scheme of surface turbulent momentum and sensible over Gobi underlying surface. Adv. Atmos. Sci., 20(1), 1–7.

    Google Scholar 

  • Zhang, Q., G. Wei and R. Huang, 2003b: Characteristics of hydrologic transfer between soil and atmosphere over Gobi near oasis at the end of summer. Adv. Atmos. Sci., 20(3), 442–452.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Ma  (马耀明).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Menenti, M. & Feddes, R. Parameterization of heat fluxes at heterogeneous surfaces by integrating satellite measurements with surface layer and atmospheric boundary layer observations. Adv. Atmos. Sci. 27, 328–336 (2010). https://doi.org/10.1007/s00376-009-9024-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-9024-4

Key words

Navigation