Skip to main content
Log in

Estimation of areally-averaged surface fluxes

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The concept of blending height is used to estimate areally averaged surface fluxes of momentum and heat in a stratified, horizontally inhomogeneous surface-layer flow. This concept is based on the assumption that at sufficiently large heights above a heterogeneous surface, subsequent surface modifications will not be recognizable in the flow individually, but overall flux and mean profiles will represent the surface condition of a large area. The height at which the flow becomes approximately independent of horizontal position is called blending height according to Wieringa (1986).

Here, it is proposed to classify the ground surface in a surface-layer grid box of a larger-scale model into several land-use categories. Surface momentum and heat fluxes should be estimated for each category at the blending height. The grid-averaged surface fluxes are to be obtained by the average of surface fluxes on each land-use surface weighted by its fractional area. The postulate of computing the surface fluxes at the blending height leads to a new formulation of turbulent transfer coefficients.

The proposed parameterization has been tested by employing a small-scale numerical model as a surface-layer grid box of a hypothesized larger-scale model. Several quite different flow configurations have been studied in order to investigate the performance of the new parameterization. Generally, the relative errors of estimated averaged surface fluxes are found to be well within ±10%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, D. A., Tannehill, J. C., and Pletcher, R. H.: 1984, Computational Fluid Mechanics and Heat Transfer, McGraw Hill Book Company, New York, 599pp.

    Google Scholar 

  • Beljaars, A. C. M., Schotanus, P., and Nieuwstadt, F. T. M.: 1983. ‘Surface Layer Similarity Under Nonuniform Fetch Conditions’, J. Climate App. Meteorol. 22, 1800–1810.

    Google Scholar 

  • Brutsaert, W.: 1979, ‘Heat and Mass Transfer to and from Surfaces with Dense Vegetation or Similar Permeable Roughness’, Boundary-Layer Meteorol. 16, 365–388.

    Google Scholar 

  • Claussen, M.: 1987, ‘The Flow in a Turbulent Boundary Layer Upstream of a Change in Surface Roughness’, Boundary-Layer Meteorol. 40, 31–86.

    Google Scholar 

  • Claussen, M.: 1988a, ‘Models of Eddy Viscosity for Numerical Simulation of Horizontally Inhomogeneous Surface Layer Flow’, Boundary-Layer Meteorol. 42, 337–369.

    Google Scholar 

  • Claussen, M.: 1988b, ‘On the Surface Energy Budget of Coastal Zones with Tidal Flats’, Beitr. Phys. Atmosph. 61, 39–49.

    Google Scholar 

  • Claussen, M.: 1989. ‘Subgrid-Scale Fluxes and Flux Divergences in a Neutrally Stratified, Horizontally Inhomogeneous Surface-Layer’, Beitr. Phys. Atmosph. 62, 236–245.

    Google Scholar 

  • Claussen, M.: 1990, ‘Area-Averaging of Surface Fluxes in a Neutrally Stratified, Horizontally Inhomogeneous Atmospheric Boundary Layer’, Atmos. Environ. 24A, 1349–1360.

    Google Scholar 

  • Claussen M.: 1991. ‘Local Advection Processes in the Surface Layer of the Marginal Ice Zone’, Boundary-Layer Meteorol. 54, in press.

  • Deardorff, J. W.: 1978, ‘Efficient Prediction of Ground Surface Temperature and Moisture with Inclusion of a Layer of Vegetation’, Jour. Geophys. Res. 83, 1889–1903.

    Google Scholar 

  • Dolman, A. J.: 1987, ‘Predicting Evaporation from an Oak Forest’, Ph.D. thesis. Rijk-suniversiteit te Groningen. 91 pp.

  • Dyer, A. J.: 1974, ‘A Review of Flux-Profile Relationships’, Boundary-Layer Meteorol. 7, 363–372.

    Google Scholar 

  • Hicks, B. B.: 1985, ‘Application of Forest-Atmosphere Turbulent Exchange Information’, The Forest- Atmosphere Interaction, D. Reidel Publishing Company, Dordrecht, pp. 631–644.

  • Hinze, H. O.: 1975, Turbulence. McGraw-Hill Book Comp., New York, 790pp.

    Google Scholar 

  • Lettau, H. H.: 1979, ‘Wind and Temperature Profile Prediction for Diabatic Surface Layers Including Strong Inversion Cases’, Boundary-Layer Meteorol. 17, 443–464.

    Google Scholar 

  • Louis, J. F.: 1979. ‘A Parametric Model of Vertical Eddy Fluxes in the Atmosphere’, Boundary-Layer Meteorol. 102, 924–933.

    Google Scholar 

  • Mahrt, L.: 1987, ‘Grid-Averaged Surface Fluxes’, Mon. Wea. Rev. 15, 1550–1560.

    Google Scholar 

  • Mason, P. J.: 1988, ‘The Formation of Areally-Averaged Roughness Lengths’, Quart. J. R. Meteorol. Soc. 114, 399–420.

    Google Scholar 

  • Taylor, P. A.: 1969, ‘The Planetary Boundary Layer above a Change in Surface Roughness’, J. Atmos. Sci. 26, 432–440.

    Google Scholar 

  • Wieringa, J.: 1986, ‘Roughness-Dependent Geographical Interpolation of Surface Wind Speed Averages’, Quart. J. R. Meteorol. Soc. 112, 867–889.

    Google Scholar 

  • Wood, N. and Mason, P. J.: 1990, ‘The Influence of Stability on Effective Roughness Lengths’, Proc. of the 9th Symposium on Turbulence and Diffusion held in Roskilde, April 30th–May 3rd, 1990, pp. 247–249.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Claussen, M. Estimation of areally-averaged surface fluxes. Boundary-Layer Meteorol 54, 387–410 (1991). https://doi.org/10.1007/BF00118868

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00118868

Keywords

Navigation