Skip to main content
Log in

Dependence of the accuracy of precipitation and cloud simulation on temporal and spatial scales

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Precipitation and associated cloud hydrometeors have large temporal and spatial variability, which makes accurate quantitative precipitation forecasting difficult. Thus, dependence of accurate precipitation and associated cloud simulation on temporal and spatial scales becomes an important issue. We report a cloudresolving modeling analysis on this issue by comparing the control experiment with experiments perturbed by initial temperature, water vapor, and cloud conditions. The simulation is considered to be accurate only if the root-mean-squared difference between the perturbation experiments and the control experiment is smaller than the standard deviation. The analysis may suggest that accurate precipitation and cloud simulations cannot be obtained on both fine temporal and spatial scales simultaneously, which limits quantitative precipitation forecasting. The accurate simulation of water vapor convergence could lead to accurate precipitation and cloud simulations on daily time scales, but it may not be beneficial to precipitation and cloud simulations on hourly time scales due to the dominance of cloud processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cess, R. D., and Coauthors, 1990: Intercomparison and interpretation of climate feedback processes in 19 atmospheric general circulation models. J. Geophys. Res., 95, 16 601–16 615.

    Google Scholar 

  • Cess, R. D, and Coauthors, 1991: Interpretation of snowclimate feedback as produced by 17 general circulation models. Science, 253, 888–892.

    Article  Google Scholar 

  • Cheng, A., and K.-M. Xu, 2006: Simulation of shallow cumuli and their transition to deep c onvecitve clouds by cloud-resolving models with different their-order turbulence closures. Quart. J. Roy. Meteor. Soc., 132, 359–382.

    Article  Google Scholar 

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85pp. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]

  • Chou, M.-D., D. P. Kratz, and W. Ridgway, 1991: Infrared radiation parameterization in numerical climate models. J. Climate, 4, 424–437.

    Article  Google Scholar 

  • Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models. J. Atmos. Sci., 55, 201–214.

    Google Scholar 

  • Cui, X., and X. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17112, doi: 10.1029/2005JD006876.

    Article  Google Scholar 

  • Donner, L. J., C. J. Semen, and R. S. Hemler, 1999: Three-dimensional cloud-system modeling of GATE convection. J. Atmos. Sci., 56, 1885–1912.

    Article  Google Scholar 

  • Gao, S., and X. Li, 2008a: Cloud-Resolving Modeling of Convective Processes. Springer, Dordrecht, 206pp.

    Book  Google Scholar 

  • Gao, S., and X. Li, 2008b: Impacts of initial conditions on cloud-resolving simulations. Adv. Atmos. Sci., 25, 737–747, doi: 10.1007/s00376-008-0737-6.

    Article  Google Scholar 

  • Gao, S., X. Cui, Y. Zhu, and X. Li, 2005: Surface rainfall processes as simulated in a cloud resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.

    Article  Google Scholar 

  • Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58, 978–997.

    Article  Google Scholar 

  • Grabowski, W. W., 2003: MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 60, 847–864.

    Article  Google Scholar 

  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Article  Google Scholar 

  • Guichard, F., J.-L. Redelsperger, and J.-P. Lafore, 2000: Cloud resolving simulations of convective activity during TOGA-COARE: Sensitivity to external sources of uncertainties. Quart. J. Roy. Meteor. Soc., 126, 3067–3095.

    Article  Google Scholar 

  • Khairoutdinov, M. F., and D. A. Randall, 2001: A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model parameterizations. Geophys. Res. Lett., 28, 3617–3620.

    Article  Google Scholar 

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607–625.

    Article  Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34. 281–287.

    Article  Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028–3042.

    Article  Google Scholar 

  • Li, X., S. Zhang, and D.-L. Zhang, 2006: Thermodynamic, cloud microphysics and rainfall responses to initial moisture perturbations in the tropical deep convective regime. J. Geophys. Res., 111, D14207, doi: 10.1029/2005JD006968.

    Article  Google Scholar 

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • Petch, J. C., 2004: The predictability of deep convection in cloud-resolving simulations over land. Quart. J. Roy. Meteor. Soc., 130, 3173–3187.

    Article  Google Scholar 

  • Petch, J. C., 2006: Sensitivity studies of developing convection in a cloud-resolving model. Quart. J. Roy. Meteor. Soc., 132, 345–358.

    Article  Google Scholar 

  • Petch, J. C., and M. E. B. Gray, 2001: Sensitivity studies using a cloud-resolving model simulation of the tropical west Pacific. Quart. J. Roy. Meteor. Soc., 127, 2287–2306.

    Article  Google Scholar 

  • Petch, J. C., A. R. Brown, and M. E. B. Gray, 2002: The impact of horizontal resolution on the simulations of convective development over land. Quart. J. Roy. Meteor. Soc., 128, 2031–2044.

    Article  Google Scholar 

  • Petch, J. C., P. N. Blossey, and C. S. Bretherton, 2008: Differences in the lower troposphere in two- and three-dimensional cloud-resolving model simulations of deep convection. Quart. J. Roy. Meteor. Soc., 134, 1941–1946.

    Google Scholar 

  • Phillips, V. T., and L. J. Donner, 2006: Cloud microphysics, radiation and vertical velocities in twoand three-dimensional simulations of deep convection. Quart. J. Roy. Meteor. Soc., 132, 3011–3033.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warmfrontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Satoh, M., H. Tomita, H. Miura, S. Iga, and T. Nasumo, 2005: Development of a global resolving model-A multi-scale structure of tropical convections. Journal of the Earth Simulator, 3, 1–9.

    Google Scholar 

  • Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035–2050.

    Article  Google Scholar 

  • Soong, S. T., and W. K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 2016–2034.

    Article  Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard Cumulus Ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.

    Google Scholar 

  • Tao, W.-K, J. Simpson, and M. McCumber, 1989: An icewater saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Article  Google Scholar 

  • Tomita, H., H. Miura, S. Iga, T. Nasuno, and M. Satoh, 2005: A global cloud-resolving simulation: Preliminary results from an aqua planetary experiment. Geophys. Res. Lett., 32, L08805, 10.1029/2005GL022459.

    Article  Google Scholar 

  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.

    Article  Google Scholar 

  • Xu, K.-M., and Coauthors, 2002: An intercomparison of cloud resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Quart. J. Roy. Meteor. Soc., 128, 593–624.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouting Gao  (高守亭).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Li, X. Dependence of the accuracy of precipitation and cloud simulation on temporal and spatial scales. Adv. Atmos. Sci. 26, 1108–1114 (2009). https://doi.org/10.1007/s00376-009-8143-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-8143-2

Key words

Navigation