Skip to main content
Log in

Impacts of initial conditions on cloud-resolving model simulations

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Impacts of initial conditions on cloud-resolving model simulations are investigated using a series of sensitivity experiments. Five experiments with perturbed initial temperature, moisture, and cloud conditions are conducted and compared to the control experiment. The model is forced by the large-scale vertical velocity and zonal wind observed and derived from NCEP/Global Data Assimilation System (GDAS). The results indicate that model predictions of rainfall are much more sensitive to the initial conditions than those of temperature and moisture. Further analyses of the surface rainfall equation and the moisture and cloud hydrometeor budgets reveal that the calculations of vapor condensation and deposition rates in the model account for the large sensitivities in rainfall simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennartz, R., T. Greenwald, C. O’Dell, and A. Heidinger, 2003: Fast passive microwave radiative transfer in precipitating clouds: Towards direct radiance assimilation. 13th, Proc. International TOVS Study Conference, Sainte-Adele, Quebec, Canada, Bureau of Meteorology Research Centre, Melbourne, Australia, 144–151.

    Google Scholar 

  • Chen, M., R. B. Rood, and J. Joiner, 1999: Assimilating TOVS humidity into the GOES-2 data assimilation system. J. Climate, 12, 2983–2995.

    Article  Google Scholar 

  • Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation model. NASA Tech. Memo. 104606, Vol. 3, 85pp. [Available from NASA/Goddard Space Flight Center, Code 913, Greenbelt, MD 20771.]

  • Chou, M.-D., D. P. Kratz, and W. Ridgway, 1991: Infrared radiation parameterization in numerical climate models. J. Climate, 4, 424–437.

    Article  Google Scholar 

  • Chou, M.-D., M. J. Suarez, C.-H. Ho, M. M.-H. Yan, and K.-T. Lee, 1998: Parameterizations for cloud overlapping and shortwave single scattering properties for use in general circulation and cloud ensemble models. J. Atmos. Sci., 55, 201–214.

    Google Scholar 

  • Cui, X., and X. Li, 2006: Role of surface evaporation in surface rainfall processes. J. Geophys. Res., 111, D17112, doi:10.1029/2005JD006876.

  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 2287–2299.

    Article  Google Scholar 

  • Gao, S., 2008: A three dimensional dynamic vorticity vector associated with tropical oceanic convection. J. Geophys. Res., 113, doi: 10.1029/2006JD008247.

  • Gao, S., F. Ping, X. Li, and W.-K. Tao, 2004: A convective vorticity vector associated with tropical convection: A two-dimensional cloud-resolving modeling study. J. Geophys. Res., 109, D14106, doi:10.1029/2004JD004807.

  • Gao, S., X. Cui, Y. Zhu, and X. Li, 2005a: Surface rainfall processes as simulated in a cloud resolving model. J. Geophys. Res., 110, D10202, doi: 10.1029/2004JD005467.

  • Gao, S., X. Cui, Y. Zhou, X. Li, and W.-K. Tao, 2005b: A modeling study of moist and dynamic vorticity vectors associated with 2D tropical convection. J. Geophys. Res., 110, D17104, doi:10.1029/2004JD005675.

  • Gao, S., L. Ran, and X. Li, 2006: Impacts of ice microphysics on rainfall and thermodynamic processes in the tropical deep convective regime: A 2D cloudresolving modeling study. Mon. Wea. Rev., 134, 3015–3024.

    Article  Google Scholar 

  • Gao, S., Y. Zhou, and X. Li, 2007: Effects of diurnal variations on tropical equilibrium states: A two-dimensional cloud-resolving modeling study. J. Atmos. Sci., 64, 656–664.

    Article  Google Scholar 

  • Gelaro, R., C. A. Reynolds, R. H. Langland, and G. D. Rohaly, 2000: A predictability study using geostationary satellite wind observations during NORPEX. Mon. Wea. Rev., 128, 3789–3807.

    Article  Google Scholar 

  • Grabowski, W. W., X. Wu, M. W. Moncrieff, and W. D. Hall, 1998: Cloud-resolving model of tropical cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55, 3264–3282.

    Article  Google Scholar 

  • Grody, N., J. Zhao, R. Ferraro, F. Weng, and R. Boers, 2001: Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. J. Geophys. Res., 106,D3, 2943–2953.

    Article  Google Scholar 

  • Khairoutdinov, M. F., and D. A. Randall, 2003: Cloud resolving modeling of the ARM summer 1997 IOP: Model formulation, results, uncertainties, and sensitivities. J. Atmos. Sci., 60, 607–625.

    Article  Google Scholar 

  • Krueger, S. K., Q. Fu, K. N. Liou, and H.-N. S. Chin, 1995: Improvement of an ice-phase microphysics parameterization for use in numerical simulations of tropical convection. J. Appl. Meteor., 34, 281–287.

    Google Scholar 

  • Leslie, L. M., J. F. Le Marshall, R. P. Morison, C. Spinoso, R. J. Purser, N. Pescod, and R. Seecamp, 1998: Improved hurricane track forecasting from the continuous assimilation of high quality satellite wind data. Mon. Wea. Rev., 126, 1248–1257.

    Article  Google Scholar 

  • Li, J., W. W. Wolf, W. P. Menzel, W. Zhang, H.-L. Huang, and T. H. Achtor, 2000: Global soundings of the atmosphere from ATOVS measurements: The algorithm and validation. J. Appl. Meteor., 39, 1248–1268.

    Article  Google Scholar 

  • Li, X., C.-H. Sui, K.-M. Lau, and M.-D. Chou, 1999: Large-scale forcing and cloud-radiation interaction in the tropical deep convective regime. J. Atmos. Sci., 56, 3028–3042.

    Article  Google Scholar 

  • Li, X., C.-H. Sui, and K.-M. Lau, 2002a: Dominant cloud microphysical processes in a tropical oceanic convective system: A 2-D cloud resolving modeling study. Mon. Wea. Rev., 130, 2481–2491.

    Article  Google Scholar 

  • Li, X., C.-H. Sui, and K.-M. Lau, 2002b: Interactions between tropical convection and its environment: An energetics analysis of a 2-D cloud resolving simulation. J. Atmos. Sci., 59, 1712–1722.

    Article  Google Scholar 

  • Li, X., S. Zhang, and D.-L. Zhang, 2006: Thermodynamic, cloud microphysics and rainfall responses to initial moisture perturbations in the tropical deep convective regime. J. Geophys. Res., 111, D14207, doi:10.1029/2005JD006968.

  • Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

    Article  Google Scholar 

  • McNally, A. P., J. C. Derber, W.-S. Wu, and B. B. Katz, 2000: The use of TOVS level-1B radiances in the NCEP SSI analysis system. Quart. J. Roy. Meteor. Soc., 126, 689–724.

    Article  Google Scholar 

  • Ping, F., Z. Luo, and X. Li, 2007: Microphysical and radiative effects of ice microphysics on tropical equilibrium states: A two-dimensional cloud-resolving modeling study. Mon. Wea. Rev., 135, 2794–2802.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1983: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part VIII: A model for the “seeder-feeder” process in warm-frontal rainbands. J. Atmos. Sci., 40, 1185–1206.

    Article  Google Scholar 

  • Rutledge, S. A., and P. V. Hobbs, 1984: The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Part XII: A disgnostic modeling study of precipitation development in narrow cold-frontal rainbands. J. Atmos. Sci., 41, 2949–2972.

    Article  Google Scholar 

  • Soong, S. T., and Y. Ogura, 1980: Response of tradewind cumuli to large-scale processes. J. Atmos. Sci., 37, 2035–2050.

    Article  Google Scholar 

  • Soong, S. T., and W. K. Tao, 1980: Response of deep tropical cumulus clouds to mesoscale processes. J. Atmos. Sci., 37, 2016–2034.

    Article  Google Scholar 

  • Sui, C.-H., K.-M. Lau, W.-K. Tao, and J. Simpson, 1994: The tropical water and energy cycles in a cumulus ensemble model. Part I: Equilibrium climate. J. Atmos. Sci., 51, 711–728.

    Article  Google Scholar 

  • Sui, C.-H., X. Li, and K.-M. Lau, 1998: Radiativeconvective processes in simulated diurnal variations of tropical oceanic convection. J. Atmos. Sci., 55, 2345–2359.

    Article  Google Scholar 

  • Sui, C.-H., X. Li, M.-J. Yang, and H.-L. Huang, 2005: Estimation of oceanic precipitation efficiency in cloud models. J. Atmos. Sci., 62, 4358–4370.

    Article  Google Scholar 

  • Tao, W.-K., and J. Simpson, 1993: The Goddard cumulus ensemble model. Part I: Model description. Terr. Atmos. Oceanic Sci., 4, 35–72.

    Google Scholar 

  • Tao, W.-K, J. Simpson, and M. McCumber, 1989: An icewater saturation adjustment. Mon. Wea. Rev., 117, 231–235.

    Article  Google Scholar 

  • Tao, W.-K., J. Simpson, C.-H. Sui, C.-L. Shie, B. Zhou, K.-M. Lau, and M. W. Moncrieff, 1999: Equilibrium states simulated by cloud-resolving models. J. Atmos. Sci., 56, 3128–3139.

    Article  Google Scholar 

  • Tao, W.-K., C.-L. Shie, J. Simpson, S. Braun, R. H. Johnson, and P. E. Ciesielski, 2003: Convective systems over the South China Sea: Cloud-resolving model simulations. J. Atmos. Sci., 60, 2929–2956.

    Article  Google Scholar 

  • Tao, W.-K., D. Johnson, C.-L. Shie, and J. Simpson, 2004: The atmospheric energy budget and large-scale precipitation efficiency of convective systems during TOGA COARE, GATE, SCSMEX, and ARM: Cloud-resolving model simulations. J. Atmos. Sci., 61, 2405–2423.

    Article  Google Scholar 

  • Wang, J.-J., X. Li, and L. Carey, 2007: Evolution, structure, cloud microphysical and surface rainfall processes of a monsoon convection during the South China Sea Monsoon Experiment. J. Atmos. Sci., 64, 360–380.

    Article  Google Scholar 

  • Wentz, F. J., C. Gentemann, D. Smith, and D. Chelton, 2000: Satellite measurements of sea surface temperature through clouds. Science, 288, 847–850.

    Article  Google Scholar 

  • Xiao, Q., X. Zou, M. Pondeca, M. A. Shapiro, and C. Velden, 2002: Impacts of GMS-5 and GOES-9 satellite-derived winds on the prediction of a NORPEX extratropical cyclone. Mon. Wea. Rev., 130, 507–528.

    Article  Google Scholar 

  • Xu, K.-M., and Coauthors, 2002: An intercomparison of cloud resolving models with the Atmospheric Radiation Measurement summer 1997 Intensive Observation Period data. Quart. J. Roy. Meteor. Soc., 128, 593–624

    Article  Google Scholar 

  • Xu, X., F. Xu, and B. Li, 2007: A cloud-resolving modeling study of a torrential rainfall event over China. J. Geophys. Res., 112, D17204, doi: 10.1029/2006JD008275.

  • Zhu, T., D.-L Zhang, and F. Weng, 2002: Impact of the Advanced Microwave Sounding Unit measurements on hurricane precition. Mon. Wea. Rev., 130, 2416–2432.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouting Gao  (高守亭).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, S., Li, X. Impacts of initial conditions on cloud-resolving model simulations. Adv. Atmos. Sci. 25, 737–747 (2008). https://doi.org/10.1007/s00376-008-0737-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0737-6

Key words

Navigation