Skip to main content
Log in

Tropical cyclones and polar lows: Velocity, size, and energy scales, and relation to the 26°C cyclone origin criteria

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

The goal of this paper is to quantitatively formulate some necessary conditions for the development of intense atmospheric vortices. Specifically, these criteria are discussed for tropical cyclones (TC) and polar lows (PL) by using bulk formulas for fluxes of momentum, sensible heating, and latent heating between the ocean and the atmosphere. The velocity scale is used in two forms: (1) as expressed through the buoyancy flux b and the Coriolis parameter l c for rotating fluids convection, and (2) as expressed with the cube of velocity times the drag coefficient through the formula for total kinetic energy dissipation in the atmospheric boundary layer. In the quasistationary case the dissipation equals the generation of the energy. In both cases the velocity scale can be expressed through temperature and humidity differences between the ocean and the atmosphere in terms of the reduced gravity, and both forms produce quite comparable velocity scales. Using parameters b and l c , we can form scales of the area and, by adding the mass of a unit air column, a scale of the total kinetic energy as well. These scales nicely explain the much smaller size of a PL, as compared to a TC, and the total kinetic energy of a TC is of the order 1018 − 1019 J. It will be shown that wind of 33 m s−1 is produced when the total enthalpy fluxes between the ocean and the atmosphere are about 700 W m−2 for a TC and 1700 W m−2 for a PL, in association with the much larger role of the latent heat in the first case and the stricter geostrophic constraints and larger static stability in the second case. This replaces the mystical role of 26°C as a criterion for TC origin. The buoyancy flux, a product of the reduced gravity and the wind speed, together with the atmospheric static stability, determines the rate of the penetrating convection. It is known from the observations that the formation time for a PL reaching an altitude of 5–6 km can be only a few hours, and a day, or even half a day, for a TC reaching 15–18 km. These two facts allow us to construct curves on the plane of T s and ΔT = T sT a to determine possibilities for forming an intense vortex. Here, T a is the atmospheric temperature at the height z = 10 m. A PL should have ΔT > 20°C in accordance with the observations and numerical simulations. The conditions for a TC are not so straightforward but our diagram shows that the temperature difference of a few degrees, or possibly even a fraction of a degree, might be sufficient for TC development for a range of static stabilities and development times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aref, H., 1979: On the motion of three vortices. Physics of Fluids, 23, 393–400.

    Article  Google Scholar 

  • Batchelor, G. K., 1969: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Physics of Fluids, 12(Suppl. II), 233–239.

    Google Scholar 

  • Bister, M., and K. Emanuel, 1998: Dissipative heating and hurricane intensity. Meteor. Atmos. Phys., 65, 223–240.

    Article  Google Scholar 

  • Boubnov, B. M., and G. S. Golitsyn, 1990: Temperature and velocity field regimes of convective motions in a rotating fluid layer. J. Fluid Mech., 219, 215–239.

    Article  Google Scholar 

  • Boubnov, B. M., and G. S. Golitsyn, 1995: Convection in Rotating Fluids. Dordrecht, Kluwer, 232pp.

    Google Scholar 

  • Charney, J., 1971: Geostrophic turbulence. J. Atmos. Sci., 28, 1087–1095.

    Article  Google Scholar 

  • DeMaria, M., J. A. Knaff, and B. H. Connell, 2001: A tropical cyclone genesis parameter for the tropical Atlantic. Wea. Forecasting, 16, 219–233.

    Article  Google Scholar 

  • Dobritsyn, A. A., and Yu. B. Sedov. 1987: On the collapse of the geostrophic vortices. Izv.-Atmos. Ocean. Phys., 23(11), 1142–1150.

    Google Scholar 

  • Donelan, M. A., B. K. Haus, N. Reul, W. J. Plant, M. Stiassnie, H. C. Graber, O. B. Brown, and E. S. Saltzman, 2004: On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett., 31, L18306, doi: 10.1029/2004GLO19460.

  • Efimov, V. V., M. V. Shokurov, and D. A. Yarovaya, 2007: Numerical modeling of a quasi-tropical cyclone over the Black Sea. Izv.-Atmos. Ocean. Phys., 43(6), 723–743.

    Google Scholar 

  • Emanuel, K., 1991: The theory of hurricanes. Annual Review of Fluid Mechanics, 23, 179–196.

    Article  Google Scholar 

  • Emanuel, K. A., 2003: Tropical cyclones. Annual Review of Earth and Planetary Sciences, 31, 75–104.

    Article  Google Scholar 

  • Emanuel, K. A., 2005: Increasing destructiveness of tropical cyclones over the past 30 years. Nature, 436, 686–688.

    Article  Google Scholar 

  • Emanuel, K. A., and R. Rotunno, 1989: Polar lows as arctic hurricanes. Tellus, 41A, 1–17.

    Article  Google Scholar 

  • Fairall, C.W., E. F. Bradley, J. H. Hare, A. A. Grachev, and J. B. Edson, 2003: Bulk parametrizations of airsea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16(4), 572–591.

    Google Scholar 

  • Fernando, J. H. S., D. L. Boyer, and R. Chen, 1991: Effects of rotation on convective turbulence. J. Fluid Mech., 228, 513–547.

    Google Scholar 

  • Fleming, R. H., 1942: The Oceans. Prentice Hall, Englewood Cliffs., New Jersey, 1087pp.

    Google Scholar 

  • Gaertner, M. A., D. Jakob, V. Gil, M. Domingues, E. Padorno, E. Sanchez, and M. Castro, 2007: Tropical cyclones over the Mediterranean Sea in climate change simulations. Geophys. Res. Lett., 34, L14711, doi: 101029/2007 GLO29977.

    Google Scholar 

  • Ginzburg, A. I., G. S. Golitsyn, and K. N. Fedorov, 1977: Measurements of the convective time scale at cooling of a fluid from its surface. Izv.-Atmos. Ocean. Phys., 15(3), 333–335.

    Google Scholar 

  • Golitsyn, G. S., 1979: A theoretical and experimental study of convection with geophysical applications and analogies. J. Fluid Mech., 95, 567–608.

    Article  Google Scholar 

  • Golitsyn, G. S., 1980: Geostrophic convection. Proc. (Doclady), USSR Ac. Sci., 251(6), 1356–1359.

    Google Scholar 

  • Golitsyn, G. S., 1997: Statistics and energetics of tropical cyclones. Proc. (Doklagy), Russ. Ac. Sci., Earth Sci. Sect., 354(4), 535–558.

    Google Scholar 

  • Golitsyn, G. S., P. F. Demchenko, I. I. Mokhov, and S. G. Priputnev, 1999: Tropical cyclones: Statistical properties of distributions in dependence on intensity and duration. Proc. (Doklady), Russ. Ac. Sci., Earth Sci. Sect., 366(4), 537–542.

    Google Scholar 

  • Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.

    Article  Google Scholar 

  • Gray, W. M., 1979: Hurricanes: Their formation, structure and likely role in the tropical circulation. Meteorology over the Tropical Oceans. D. B. Shaw, Ed., Roy. Meteor. Soc., 155–218.

  • Henderson-Sellers, B., 1984: A new formula for the latent heat of evaporation as a function of temperature. Quart. J. Roy. Meteor. Soc., 110, 1186–1190.

    Article  Google Scholar 

  • Hendriks, E. A., M. T. Montgomery, and C. A. Davis, 2004: Role of “vortical” hot towers in the formation of TC Diana (1984). J. Atmos. Sci., 61, 1209–1232.

    Article  Google Scholar 

  • Hopfinger, E. J., F. K. Browand, and J. Gagne, 1982: Waves and turbulence in rotating tank. J. Fluid Mech., 125, 505–531.

    Article  Google Scholar 

  • Kitaigorodskii, S. A., 1973: The Physics of the Air-Sea Interaction. A. Baruch, Transl., Israel Program for Scientific Translation, Jerusalem, 237pp.

    Google Scholar 

  • Klotzbach, P. J., 2006: Trends in global tropical cyclone activity over the past twenty years (1986–2005). Geophys. Res. Lett., 33, L10805, doi: 1029/2006 GL025881.

    Google Scholar 

  • Kochin, N. E., I. A. Kibel, and N. V. Rose, 1964: Theoretical Hydromechanics. Interscience, Singapore, 560pp.

    Google Scholar 

  • Kleinschmidt, E., 1951: Grundlagen einer Theorie des tropischen Zyklonen. Arch. Meteorol. Geophys. Bioklimatol., 4A, 53–71.

    Article  Google Scholar 

  • Kraichnan, R. H., 1967: Inertial ranges in twodimensional turbulence. Physics of Fluids, 10, 1417–1423.

    Article  Google Scholar 

  • Kraus, E. B., and J. A. Businger, 1994: Atmosphere-Ocean Interaction. 2nd ed., Oxford Univ. Press, 362pp.

  • Kumar, M., 2006: Field campaign examines hurricane origin. EOS Trans., 87(32) doi: 10: 1029/2006EO320024.

  • Lighthill, J., G. Holland, W. Gray, C. Landsea, G. Craig, J. Evens, Y. Kurihara, and C. Guard, 1994: Global climate change and tropical cyclones. Bull. Amer. Meteor. Soc., 75, 2147–2157.

    Google Scholar 

  • Lystad, H., Ed., 1986: Polar lows in the Norwegian, Greenland and Barents Seas. Final Report, The Norwegian Meteorological Institute, Oslo, 196pp.

    Google Scholar 

  • Maxworthy, T., and S. Narimosa, 1994: Unsteady turbulent convection into a homogeneous rotating fluid with oceanographic applications. J. Phys. Oceanogr., 24, 865–887.

    Article  Google Scholar 

  • Mokhov, I. I., 1994: Diagnosis of the Climate System Structure. Hydromet. Publ. House, SPb, 272pp. (in Russian)

  • Mokhov, I. I., and S. G. Priputnev, 1999: Tropical cyclones: Statistical and model relations between intensity and duration. Research Activities in Atmosphericand Oceanic Modeling, H. Ritchie, Ed., WMO/TDNo. 942,2.22-2.23.

  • Mokhov, I. I., and M. G. Akperov, 2006: Vertical temperature gradient in the troposphere and its connection to the surface temperature after reanalysis data. Izv.-Atmos. Ocean. Phys., 42(4), 467–475.

    Google Scholar 

  • Moline, P.-A, 1964: Chasseurs de Typhoons. Flammarion, 334pp.

  • Monin, A. S., 1970: On mass turbulent fluxes in the ocean. Proc. (Doklady), USSR. Ac. Sci., 193(5), 1058–1060.

    Google Scholar 

  • Monin, A. S., and A. M. Yaglom, 1971: Statistical Hydrodynamics. V. 1. MIT Press, 708pp.

  • Montgomery, M. T., M. E. Nicolls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386.

    Article  Google Scholar 

  • Nordening, T. E., and E. A. Rasmussen, 1992: A most beautiful polar low. Tellus., 44A, 81–99

    Google Scholar 

  • Novikov, E. A., 1976: Dynamics and statistics of a system of vortices. J. Exp. Theor. Phys., 68(5), 1868–1882 (English translated, 1976, 41, 937–943).

    Google Scholar 

  • Novikov, E. A., 1980: Stochastization and collapse of vortex systems. Ann. N. Y. Acad. Sci., 357, 77–54.

    Article  Google Scholar 

  • Novikov, E. A., and Yu. B. Sedov, 1979: Collapse of vortices. J. Exp. Theor. Phys., 77(2), 558–567.

    Google Scholar 

  • Novikov, E. A., and Yu. B. Sedov, 1983: Vorticity concentration and spiral vortices. Izv. USSR Ac. Sci. Fluid and Gas Mech., No. 1, 15–21. (in Russian)

  • Onsager, L., 1949: Statistical hydrodynamics. Nuovo Cimento, 6(Suppl.), 279–287.

    Google Scholar 

  • Palmen, E., 1948: On the formation and structure of tropical cyclones. Geophysics, 3, 26–38.

    Google Scholar 

  • Palmen, E., and C. W. Newton, 1969: Atmospheric Circulation Systems. Academic Press, N. Y. and London, 603pp.

    Google Scholar 

  • Paret, J., M.-C. Julien, and P. Tabeling, 1999: Vorticity statistics in the two-dimensional enstrophy cascade. Physical Review Letters, 83, 3418–3421.

    Article  Google Scholar 

  • Pelevin, V. N., and V. V. Rostovtseva, 2004: New temperature-humidity criterion for possibility estimate for tropical cyclone origin. Optics of Atmosphere and Ocean., 17(7), 563–568.

    Google Scholar 

  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279–283.

    Article  Google Scholar 

  • Rasmussen, E. A. and J. Turner, 2003: Polar Lows. Mesoscale Weather Systems in Polar Regions. Cambridge University Press, 612pp.

  • Riehl, H., 1950: A model for hurricane formation. J. Appl. Phys., 21, 917–925.

    Article  Google Scholar 

  • Riehl, H., 1954: Tropical Meteorology. Academic Press, 366pp.

  • Saffman, L. G., 1992: Vortex Dynamics. Cambridge University Press, 376pp.

  • Sedov, Yu. B., 1995: Interaction of spiral vortices. Izvestia Ac. of Sci. of USSR, Fluid and Gas Mech. Sect., No. 4, 183–185. (in Russian)

  • Smith, S. D., 1989: Evaporation fluxes over sea: An overview. Bound. Layer Meteor., 47, 277–293.

    Article  Google Scholar 

  • Turner, J., 1973: Buoyancy Effects in Fluids. Cambridge University Press, 367pp.

  • Trenberth, K. E., and D. J. Shea, 2006: Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett., 33, L12704, doi: 1029/2006 GLO26894.

    Google Scholar 

  • Webster, P. J., G. J. Holland, J. A. Curry, and H.-R. Chang, 2005: Changes in tropical cyclone number and intensity in a warming environment. Science, 309, 1844–1846.

    Article  Google Scholar 

  • Zilitinkevich, S. S., 1987: Theoretical model for the turbulent penetrative convection. Izvestia-Atmos. Ocean. Phys., 23(6), 593–610.

    Google Scholar 

  • Zilitinkevich, S. S., 1991: Turbulent Penetrative Convection. Avebury Technical, Brookfield USA, Hong Kong, Singapore, Sydney, 179pp.

    Google Scholar 

  • Zhu, T., and D. L. Zhang, 2006: The impact of the storminduced SST cooling on hurricane intensity. Adv. Atmos. Sci., 23, 14–22.

    Article  Google Scholar 

  • Zubov, N. N., 1945: Arctic Ice. Glavsevmorputs Moscow. 360pp. (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Golitsyn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golitsyn, G.S. Tropical cyclones and polar lows: Velocity, size, and energy scales, and relation to the 26°C cyclone origin criteria. Adv. Atmos. Sci. 26, 585–598 (2009). https://doi.org/10.1007/s00376-009-0585-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-009-0585-z

Key words

Navigation