Skip to main content
Log in

Simulation of terrestrial dust devil patterns

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

Introducing the surface properties [initial vortex, ground temperature and surface momentum impact height (SMIH)] for the boundary conditions, dust-devil-scale large eddy simulations (LES) were carried out. Given three parameters of initial vortex, ground temperature and the SMIH based on Sinclair’s observation, the dust devil physical characteristics, such as maximum tangential velocity, updraft velocity, pressure drop in the inner core region, and even reverse flow at the top of the core region, are predicted, and are found to be close to the observations, thus demonstrating the ability of the simulation. The physical characteristics of different modeled dust devils are reproduced and compared to the values predicted by Renno et al.’ theory. Even for smaller temperature differences or weaker buoyancy, severe dust devils may be formed by strong incipient vortices. It is also indicated that SMIH substantially affects the near-surface shape of terrestrial dust devils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Battan, L. J., 1958: Energy of a dust devil. J. Meteor., 15, 235–237.

    Google Scholar 

  • Cantor, B., M. Malin, and K. S. Edgett, 2002: Multi-year Mars Orbiter Camera (MOC) observations of repeated Martian weather phenomena during the northern summer season. J. Geophys. Res. E, 107(3), 5014, doi:10.1029/2001JE001588.

    Article  Google Scholar 

  • Cortese, T., and S. Balachandar, 1993: Vertical nature of thermal plumes in turbulent convection. Physics of Fluids A, 5, 3226–3232.

    Article  Google Scholar 

  • Greeley, R., M. R. Balme, J. D. Iversen, S. Metzger, R. Mickelson, J. Phoreman, and B. White, 2003: Martian dust devils: Laboratory simulations of particle threshold. J. Geophys. Res. E, 108(5), 7–1.

    Google Scholar 

  • Green, S. I., 1995: Fluid Vortices. Kluwer Academic Publishers, Dordrecht, Netherlands, 878pp.

    Google Scholar 

  • Gu, Z., Y. Zhao, Y. Li, Y. Yu, and X. Feng, 2006: Numerical simulation of dust lifting within dust devils-simulation of an intense vortex. J. Atmos. Sci., 63, 2630–2641.

    Article  Google Scholar 

  • Hess, G. D. and K. T. Spillane, 1990: Characteristics of dust devils in Australia. J. Appl. Meteor., 29, 498–507.

    Article  Google Scholar 

  • Ives, R. L. 1947: Behavior of dust devils. Bull. Amer. Meteor. Soc., 28, 168–174.

    Google Scholar 

  • Kanak, K. M., 2005: Numerical simulation of dust devil-scale vortices. Quart. J. Roy. Meteor. Soc., 131, 1271–1292.

    Article  Google Scholar 

  • Kanak, K. M., D. K. Lilly, and J. T. Snow, 2000: The formation of vertical vortices in the convective boundary layer. Quart. J. Roy. Meteor. Soc., 126, 2789–2810.

    Article  Google Scholar 

  • Leslie, L. M., and R. K. Smith, 1977: On the choice of radial boundary conditions for numerical models of sub-synoptic vortex flows in the atmosphere, with application to dust devils. Quart. J. Roy. Meteor. Soc., 103, 499–510.

    Article  Google Scholar 

  • Leovy, C. B., 2003: The devil is in the dust. Nature, 424(6952), 1008–1009.

    Article  Google Scholar 

  • Li, J. F., 2002: Desert Climate. China Meteorological Press, Beijing, 185pp. (in Chinese)

    Google Scholar 

  • Lilly, D. K., 1992: A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A, 4(3), 633–635.

    Article  Google Scholar 

  • Michaels, T. I., and S. C. R. Rafkin, 2004: Large eddy simulation of atmospheric convection on Mars. Quart. J. Roy. Meteor. Soc., 130(599), 1251–1274.

    Article  Google Scholar 

  • Nieuwstadt, F. T. M., M. Mason, J. P. Moeng, and U. Schumann, 1991: Large eddy simulation of the convection boundary layer: A comparison of four computer codes. Proc. 8th Symposium on Turbulent Shear Flows, Springer-Verlag, 651–664.

  • Renno, N. O., and H. B. Bluestein, 2001: A simple theory for waterspouts. J. Atmos. Sci., 58, 927–932.

    Article  Google Scholar 

  • Renno, N. O., M. L. Burkett, and M. P. Larkin, 1998: A simple thermodynamical theory for dust devils. J. Atmos. Sci., 55, 3244–3252.

    Article  Google Scholar 

  • Renno, N. O., and Coauthors, 2004: MATADOR 2002: A pilot field experiment on convective plumes and dust devils. J. Geophys. Res. E, 109, 1–10.

    Google Scholar 

  • Ryan, J. A., and I. J. Carroll, 1970: Dust devils wind velocities: Mature state. J. Geophys. Res., 75, 531–541.

    Google Scholar 

  • Shapiro, A., and Y. Kogan, 1994: On vortex formation in multicell convective clouds in a shear-free environment. Atmospheric Research, 33, 125–136.

    Article  Google Scholar 

  • Shapiro, A., and K. M. Kanak, 2002: Vortex formation in ellipsoidal thermal bubbles. J. Atmos. Sci., 59, 2253–2269.

    Article  Google Scholar 

  • Shen, Z., J. Cao, X. Li, T. Okuda, Y. Wang, and X. Zhang, 2006: Mass concentration and mineralogical characteristics of aerosol particle collected at Dunhuang during ACE-Asia. Adv. Atmos. Sci., 23(2), 291–298.

    Article  Google Scholar 

  • Sinclair, P. C., 1966: A quantitative analysis of the dust devil. Ph. D. dissertation, University of Arizona, 292pp.

  • Sinclair, P. C., 1973: The lower structure of dust devils. J. Atmos. Sci., 30, 1599–1619.

    Article  Google Scholar 

  • Smagorinsky, J., 1963: General circulation experiments with the primitive equations: Part I, The basic experiment. Mon. Wea. Rev., 91, 199–164.

    Google Scholar 

  • Snow, J. T., 1982: A review of recent advances in tornado vortex dynamics. Rev. Geophys. Space Phys., 20, 953–964.

    Google Scholar 

  • Vatistas, G. H., V. Kozel, and W. C. Mih, 1991: Simpler model for concentrated vortices. Experimental Fluids, 11, 73–76.

    Article  Google Scholar 

  • Wang, M., Q. Liu, and X. Yang, 2004: A review of research on human activity induced climate change I greenhouse gases and aerosols. Adv. Atmos. Sci., 21(3), 314–321.

    Google Scholar 

  • Willis, G. E., and J. W. Deardorff, 1979: Laboratory observations of turbulent penetrative convection platforms. J. Geophys. Res., 84, 296–301.

    Article  Google Scholar 

  • Zhao, Y. Z., 2004: Large eddy simulation of dust devils. Ph. D. dissertation, Xi’an Jiaotong University, China, 160pp. (in Chinese).

    Google Scholar 

  • Zhao, Y. Z., Z. L. Gu, Y. Z. Yu, Y. Ge, Y. Li, and X. Feng, 2004: Mechanism and large eddy simulation of dust devils. Atmos.-Ocean, 42, 61–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gu Zhaolin  (顾兆林).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, Z., Qiu, J., Zhao, Y. et al. Simulation of terrestrial dust devil patterns. Adv. Atmos. Sci. 25, 31–42 (2008). https://doi.org/10.1007/s00376-008-0031-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-008-0031-7

Key words

Navigation