Skip to main content
Log in

Large-Eddy Simulations of Dust Devils and Convective Vortices

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

In this review, we address the use of numerical computations called Large-Eddy Simulations (LES) to study dust devils, and the more general class of atmospheric phenomena they belong to (convective vortices). We describe the main elements of the LES methodology. We review the properties, statistics, and variability of dust devils and convective vortices resolved by LES in both terrestrial and Martian environments. The current challenges faced by modelers using LES for dust devils are also discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • M. Balme, R. Greeley, Dust devils on earth and mars. Rev. Geophys. 44(3) (2006)

  • E.L. Barth, W.M. Farrell, S.C.R. Rafkin, Electric fields in simulated martian dust devils, in Mars Atmosphere: Modelling and Observation, 5th International Workshop, ed. by F. Forget, M. Millour, 2014, p. 2204

    Google Scholar 

  • H.B. Bluestein, C.C. Weiss, A.L. Pazmany, Doppler radar observations of dust devils in Texas. Mon. Weather Rev. 132, 209 (2004). doi:10.1175/1520-0493(2004)132<0209:DROODD>2.0.CO;2

    Article  ADS  Google Scholar 

  • D.S. Choi, C.M. Dundas, Measurements of martian dust devil winds with HiRISE. Geophys. Res. Lett. 38, 24206 (2011). doi:10.1029/2011GL049806

    Article  ADS  Google Scholar 

  • T. Cortese, S. Balachandar, Vortical nature of thermal plumes in turbulent convection. Phys. Fluids A, Fluid Dyn. (1989–1993) 5(12), 3226–3232 (1993)

    Article  ADS  MATH  Google Scholar 

  • J.W. Deardorff, Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972). doi:10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

    Article  ADS  Google Scholar 

  • S. Dupont, G. Bergametti, B. Marticorena, S. SimoëNs, Modeling saltation intermittency. J. Geophys. Res., Atmos. 118, 7109–7128 (2013). doi:10.1002/jgrd.50528

    Article  ADS  Google Scholar 

  • D.R. Durran, Numerical Methods for Fluid Dynamics: With Applications to Geophysics. Texts in Applied Mathematics (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  • M.D. Ellehoj, H.P. Gunnlaugsson, P.A. Taylor, H. Kahanpää, K.M. Bean, B.A. Cantor, B.T. Gheynani, L. Drube, D. Fisher, A.-M. Harri, C. Holstein-Rathlou, M.T. Lemmon, M.B. Madsen, M.C. Malin, J. Polkko, P.H. Smith, L.K. Tamppari, W. Weng, J. Whiteway, Convective vortices and dust devils at the Phoenix Mars mission landing site. J. Geophys. Res., Planets 115(E14), 16 (2010). doi:10.1029/2009JE003413

    Google Scholar 

  • L.K. Fenton, R. Lorenz, Dust devil height and spacing with relation to the martian planetary boundary layer thickness. Icarus 260, 246–262 (2015). doi:10.1016/j.icarus.2015.07.028

    Article  ADS  Google Scholar 

  • L.K. Fenton, T.I. Michaels, Characterizing the sensitivity of daytime turbulent activity on Mars with the MRAMS LES: early results. Int. J. Mars Sci. Explor. 5, 159–171 (2010). doi:10.1555/mars.2010.0007

    Google Scholar 

  • L. Fenton, D. Reiss, M. Lemmon, B. Marticorena, S. Lewis, B. Cantor, Orbital observations of dust lofted by daytime convective turbulence. Space Sci. Rev. 1–54 (2016). doi:10.1007/s11214-016-0243-6

  • B.H. Fiedler, K.M. Kanak, Rayleigh–Bénard convection as a tool for studying dust devils. Atmos. Sci. Lett. 2, 104–113 (2001). doi:10.1006/asle.2001.0043

    Article  ADS  Google Scholar 

  • J.A. Fisher, M.I. Richardson, C.E. Newman, M.A. Szwast, C. Graf, S. Basu, S.P. Ewald, A.D. Toigo, R.J. Wilson, A survey of martian dust devil activity using Mars global surveyor Mars orbiter camera images. J. Geophys. Res., Planets 110(E9), 3004 (2005). doi:10.1029/2003JE002165

    ADS  Google Scholar 

  • S.D. Fuerstenau, Solar heating of suspended particles and the dynamics of martian dust devils. Geophys. Res. Lett. 33, 19 (2006). doi:10.1029/2006GL026798

    Article  Google Scholar 

  • B.T. Gheynani, P.A. Taylor, Large-eddy simulations of vertical vortex formation in the terrestrial and martian convective boundary layers. Bound.-Layer Meteorol. 137, 223–235 (2010). doi:10.1007/s10546-010-9530-z

    Article  ADS  Google Scholar 

  • B.T. Gheynani, P.A. Taylor, Large eddy simulation of typical dust devil-like vortices in highly convective martian boundary layers at the Phoenix lander site. Planet. Space Sci. 59, 43–50 (2011). doi:10.1016/j.pss.2010.10.011

    Article  ADS  Google Scholar 

  • R. Greeley, P.L. Whelley, R.E. Arvidson, N.A. Cabrol, D.J. Foley, B.J. Franklin, P.G. Geissler, M.P. Golombek, R.O. Kuzmin, G.A. Landis, M.T. Lemmon, L.D.V. Neakrase, S.W. Squyres, S.D. Thompson, Active dust devils in Gusev crater, Mars: observations from the Mars exploration rover spirit. J. Geophys. Res., Planets 111(E10), 12 (2006). doi:10.1029/2006JE002743

    Google Scholar 

  • Z. Gu, Y. Zhao, Y. Li, Y. Yu, X. Feng, Numerical simulation of dust lifting within dust devils simulation of an intense vortex. J. Atmos. Sci. 63, 2630–2641 (2006). doi:10.1175/JAS3748.1

    Article  ADS  Google Scholar 

  • R.M. Haberle, H.C. Houben, R. Hertenstein, T. Herdtle, A boundary layer model for Mars: comparison with Viking lander and entry data. J. Atmos. Sci. 50, 1544–1559 (1993)

    Article  ADS  Google Scholar 

  • R.G. Harrison, E. Barth, F. Esposito, J. Merrison, F. Montmessin, K.L. Aplin, C. Borlina, J.J. Berthelier, G. Déprez, W.M. Farrell, I.M.P. Houghton, N.O. Renno, K.A. Nicoll, S.N. Tripathi, M. Zimmerman, Applications of electrified dust and dust devil electrodynamics to martian atmospheric electricity. Space Sci. Rev. 1–47 (2016). doi:10.1007/s11214-016-0241-8

  • D.P. Hinson, M. Pätzold, S. Tellmann, B. Häusler, G.L. Tyler, The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008). doi:10.1016/j.icarus.2008.07.003

    Article  ADS  Google Scholar 

  • N. Huang, G. Yue, X. Zheng, Numerical simulations of a dust devil and the electric field in it. J. Geophys. Res., Atmos. 113(D20) (2008)

  • J. Ito, H. Niino, M. Nakanishi, Large eddy simulation on dust suspension in a convective mixed layer. SOLA 6, 133–136 (2010). doi:10.2151/sola.2010-034

    Article  Google Scholar 

  • J. Ito, R. Tanaka, H. Niino, M. Nakanishi, Large eddy simulation of dust devils in a diurnally-evolving convective mixed layer. J. Meteorol. Soc. Jpn. 88, 64–77 (2010)

    Article  Google Scholar 

  • J. Ito, H. Niino, M. Nakanishi, Effects of ambient rotation on dust devils. SOLA 7, 165–168 (2011). doi:10.2151/sola.2011-042

    Article  Google Scholar 

  • J. Ito, H. Niino, M. Nakanishi, Formation mechanism of dust devil-like vortices in idealized convective mixed layers. J. Atmos. Sci. 70, 1173–1186 (2013). doi:10.1175/JAS-D-12-085.1

    Article  ADS  Google Scholar 

  • K.M. Kanak, Numerical simulation of dust devil-scale vortices. Q. J. R. Meteorol. Soc. 131(607), 1271–1292 (2005)

    Article  ADS  Google Scholar 

  • K.M. Kanak, On the numerical simulation of dust devil-like vortices in terrestrial and martian convective boundary layers. Geophys. Res. Lett. 33(19) (2006)

  • K.M. Kanak, D.K. Lilly, J.T. Snow, The formation of vertical vortices in the convective boundary layer. Q. J. R. Meteorol. Soc. 126(569), 2789–2810 (2000)

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos. Chem. Phys. 12(12), 7309–7320 (2012). doi:10.5194/acp-12-7309-2012

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, Large-eddy simulation of turbulent dust emission. Aeolian Res. 8, 49–58 (2013). doi:10.1016/j.aeolia.2012.10.010

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, A numerical study on dust devils with implications to global dust budget estimates. Aeolian Res. 22, 47–58 (2016). doi:10.1016/j.aeolia.2016.05.003

    Article  ADS  Google Scholar 

  • M. Klose, Y. Shao, X.L. Li, H.S. Zhang, M. Ishizuka, M. Mikami, J.F. Leys, Further development of a parameterization for convective turbulent dust emission and evaluation based on field observations. J. Geophys. Res., Atmos. 119, 10441–10457 (2014). doi:10.1002/2014JD021688

    Article  ADS  Google Scholar 

  • M. Klose, B.C. Jemmett-Smith, H. Kahanpää, M. Kahre, P. Knippertz, M.T. Lemmon, S.R. Lewis, R.D. Lorenz, L.D.V. Neakrase, C. Newman, M.R. Patel, D. Reiss, A. Spiga, P.L. Whelley, Dust devil sediment transport: from lab to field to global impact. Space Sci. Rev. 1–50 (2016). doi:10.1007/s11214-016-0261-4

  • P. Knippertz, J.-B.W. Stuut, Mineral Dust: A Key Player in the Earth System (Springer, Netherlands, 2014)

    Book  Google Scholar 

  • M.V. Kurgansky, R.D. Lorenz, N.O. Renno, T. Takemi, Z. Gu, W. Wei, Dust devil steady-state structure from a fluid dynamics perspective. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi:10.1007/s11214-016-0281-0

  • C.B. Leovy, Martian meteorological variability. Adv. Space Res. 2, 19–44 (1982)

    Article  ADS  Google Scholar 

  • D.K. Lilly, On the numerical simulation of buoyant convection. Tellus 14(2), 148–172 (1962)

    Article  ADS  Google Scholar 

  • G.A. Loosmore, J.R. Hunt, Dust resuspension without saltation. J. Geophys. Res. 105(D16), 20663–20671 (2000). doi:10.1029/2000JD900271

    Article  ADS  Google Scholar 

  • R. Lorenz, On the statistical distribution of dust devil diameters. Icarus 215, 381–390 (2011). doi:10.1016/j.icarus.2011.06.005

    Article  ADS  Google Scholar 

  • R.D. Lorenz, Vortex encounter rates with fixed barometer stations: comparison with visual dust devil counts and large-eddy simulations. J. Atmos. Sci. 71(12), 4461–4472 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  • R.D. Lorenz, B.K. Jackson, Dust devil populations and statistics. Space Sci. Rev. 1–21 (2016). doi:10.1007/s11214-016-0277-9

  • R.D. Lorenz, D. Reiss, Solar panel clearing events, dust devil tracks, and in-situ vortex detections on Mars. Icarus 248, 162–164 (2015). doi:10.1016/j.icarus.2014.10.034

    Article  ADS  Google Scholar 

  • R.D. Lorenz, M.R. Balme, Z. Gu, H. Kahanpää, M. Klose, M.V. Kurgansky, M.R. Patel, D. Reiss, A.P. Rossi, A. Spiga, T. Takemi, W. Wei, History and applications of dust devil studies. Space Sci. Rev. 1–33 (2016). doi:10.1007/s11214-016-0239-2

  • M.C. Malin, K.S. Edgett, Mars global surveyor Mars orbiter camera: interplanetary cruise through primary mission. J. Geophys. Res. 106, 23429–23570 (2001). doi:10.1029/2000JE001455

    Article  ADS  Google Scholar 

  • P. Mason, Large-eddy simulation of the convective atmospheric boundary layer. J. Atmos. Sci. 46(11), 1492–1516 (1989)

    Article  ADS  Google Scholar 

  • S.M. Metzger, M.R. Balme, M.C. Towner, B.J. Bos, T.J. Ringrose, M.R. Patel, In situ measurements of particle load and transport in dust devils. Icarus 214(2), 766–772 (2011). doi:10.1016/j.icarus.2011.03.013

    Article  ADS  Google Scholar 

  • T.I. Michaels, Numerical modeling of Mars dust devils: albedo track generation. Geophys. Res. Lett. 33(19) (2006). doi:10.1029/2006GL026268

  • T.I. Michaels, S.C.R. Rafkin, Large eddy simulation of atmospheric convection on Mars. Q. J. R. Meteorol. Soc. 130, 1251–1274 (2004). doi:10.1256/qj.02.169

    Article  ADS  Google Scholar 

  • J.D. Mirocha, J.K. Lundquist, B. Kosovic, Implementation of a nonlinear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon. Weather Rev. 138, 4212–4228 (2010)

    Article  ADS  Google Scholar 

  • C. Moeng, J. Dudhia, J. Klemp, P. Sullivan, Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 135(6), 2295–2311 (2007)

    Article  ADS  Google Scholar 

  • J.E. Moores, M.T. Lemmon, H. Kahanpää, S.C.R. Rafkin, R. Francis, J. Pla-Garcia, K. Bean, R. Haberle, C. Newman, M. Mischna, A.R. Vasavada, M. de la Torre Juárez, N. Rennó, J. Bell, F. Calef, B. Cantor, T.H. Mcconnochie, A.-M. Harri, M. Genzer, M.H. Wong, M.D. Smith, F.J. Martín-Torres, M.-P. Zorzano, O. Kemppinen, E. McCullough, Observational evidence of a suppressed planetary boundary layer in northern Gale crater, Mars as seen by the Navcam instrument onboard the Mars Science Laboratory rover. Icarus 249, 129–142 (2015). doi:10.1016/j.icarus.2014.09.020

    Article  ADS  Google Scholar 

  • D.P. Mulholland, A. Spiga, C. Listowski, P.L. Read, An assessment of the impact of local processes on dust lifting in martian climate models. Icarus 252, 212–227 (2015). doi:10.1016/j.icarus.2015.01.017

    Article  ADS  Google Scholar 

  • J. Murphy, K. Steakley, M.B. Balme, G. Deprez, F. Esposito, H. Kahanpää, M. Lemmon, R.D. Lorenz, N. Murdoch, L.D.V. Neakrase, M. Patel, P. Whelley, Field measurements of terrestrial and martian dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted). doi:10.1007/s11214-016-0283-y

  • L.D.V. Neakrase, M.B. Balme, F. Esposito, T. Kelling, M. Klose, J.F. Kok, B. Marticonera, J. Merrison, M.R. Patel, G. Wurm, Particle lifting processes in dust devils. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  • C.E. Newman, S.R. Lewis, P.L. Read, F. Forget, Modeling the martian dust cycle, 1. Representations of dust transport processes. J. Geophys. Res., Planets 107, 5123 (2002). doi:10.1029/2002JE001910

    ADS  Google Scholar 

  • S. Nishizawa, H. Yashiro, Y. Sato, Y. Miyamoto, H. Tomita, Influence of grid aspect ratio on planetary boundary layer turbulence in large-eddy simulations. Geosci. Model Dev. 8(10), 3393–3419 (2015). doi:10.5194/gmd-8-3393-2015. http://www.geosci-model-dev.net/8/3393/2015/

    Article  ADS  Google Scholar 

  • S. Nishizawa, M. Odaka, Y.O. Takahashi, K. Sugiyama, K. Nakajima, M. Ishiwatari, S. Takehiro, H. Yashiro, Y. Sato, H. Tomita, Y.-Y. Hayashi, Martian dust devil statistics from high-resolution large-eddy simulations. Geophys. Res. Lett. 43(9), 4180–4188 (2016). doi:10.1002/2016GL068896

    Article  ADS  Google Scholar 

  • M. Odaka, K. Nakajima, S. Takehiro, M. Ishiwatari, Y. Hayashi, A numerical study of the martian atmospheric convection with a two-dimensional anelastic model. Earth Planets Space 50, 431–437 (1998)

    Article  ADS  Google Scholar 

  • H. Ohno, T. Takemi, Mechanisms for intensification and maintenance of numerically simulated dust devils. Atmos. Sci. Lett. 11(1), 27–32 (2010a)

    Google Scholar 

  • H. Ohno, T. Takemi, Numerical study for the effects of mean wind on the intensity and evolution of dust devils. SOLA 6(1), 5–8 (2010b). doi:10.2151/sola.6A-002

    Article  Google Scholar 

  • A. Petrosyan, B. Galperin, S.E. Larsen, S.R. Lewis, A. Määttänen, P.L. Read, N. Renno, L.P.H.T. Rogberg, H. Savijärvi, T. Siili, A. Spiga, A. Toigo, L. Vázquez, The martian atmospheric boundary layer. Rev. Geophys. 49, 3005 (2011). doi:10.1029/2010RG000351

    Article  ADS  Google Scholar 

  • R. Pielke, W. Cotton, R. Walko, C. Trembaek, W. Lyons, L. Grasso, M. Nieholls, M. Moran, D. Wesley, T. Lee, et al., A comprehensive meteorological modeling system-RAMS. Meteorol. Atmos. Phys. 49, 69–91 (1992)

    Article  ADS  Google Scholar 

  • S. Raasch, T. Franke, Structure and formation of dust devil-like vortices in the atmospheric boundary layer: a high-resolution numerical study. J. Geophys. Res., Atmos. (1984–2012) 116(D16) (2011)

  • S.C.R. Rafkin, R.M. Haberle, T.I. Michaels, The Mars regional atmospheric modeling system: model description and selected simulations. Icarus 151, 228–256 (2001)

    Article  ADS  Google Scholar 

  • S. Rafkin, L. Fenton, R. Lorenz, B. Jemmett-Smith, N. Renno, T. Takemi, P. Knippertz, J. Ito, D. Tyler, Dust devil formation conditions and process. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  • D. Reiss, D. Lüsebrink, H. Hiesinger, T. Kelling, G. Wurm, J. Teiser, High altitude dust devils on Arsia Mons, Mars: testing the greenhouse and thermophoresis hypothesis of dust lifting, in Lunar and Planetary Institute Science Conference Abstracts. Lunar and Planetary Inst. Technical Report, vol. 40, 2009, p. 1961

    Google Scholar 

  • D. Reiss, P. Whelley, L.D.V. Neakrase, M. Zimmerman, L. Fenton, M. Balme, A.P. Rossi, T. Statella, Dust devil tracks and surface albedo changes. Space Sci. Rev. [“Dust devils” special issue] (2016, submitted)

  • N.O. Renno, M.L. Burkett, M.P. Larkin, A simple thermodynamical theory for dust devils. J. Atmos. Sci. 55, 3244–3252 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  • N.O. Renno, A.-S. Wong, S.K. Atreya, I. de Pater, M. Roos-Serote, Electrical discharges and broadband radio emission by martian dust devils and dust storms. Geophys. Res. Lett. 30(22), 220000-1 (2003)

    Article  Google Scholar 

  • N.O. Renno, V.J. Abreu, J. Koch, P.H. Smith, O.K. Hartogensis, H.A.R. De Bruin, D. Burose, G.T. Delory, W.M. Farrell, C.J. Watts, J. Garatuza, M. Parker, A. Carswell, MATADOR 2002: a pilot field experiment on convective plumes and dust devils. J. Geophys. Res. 109(E18), 7001 (2004). doi:10.1029/2003JE002219

    Article  Google Scholar 

  • M.I. Richardson, A.D. Toigo, C.E. Newman, PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112(E09001) (2007). doi:10.1029/2005JE002636

  • R. Rotunno, The fluid dynamics of tornadoes. Annu. Rev. Fluid Mech. 45, 59–84 (2013). doi:10.1146/annurev-fluid-011212-140639

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction (Springer, Berlin, 2006)

    MATH  Google Scholar 

  • H. Sävijarvi, A model study of the atmospheric boundary layer in the Mars Pathfinder lander conditions. Q. J. R. Meteorol. Soc. 125(554), 483–493 (1999)

    Article  ADS  Google Scholar 

  • J.T. Schofield, D. Crisp, J.R. Barnes, R.M. Haberle, J.A. Magalhaães, J.R. Murphy, A. Seiff, S. Larsen, G. Wilson, The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science 278, 1752–1757 (1997)

    Article  ADS  Google Scholar 

  • Y. Shao, S. Liu, J. Schween, S. Crewell, Large-eddy atmosphere—land-surface modelling over heterogeneous surfaces: model development and comparison with measurements. Bound.-Layer Meteorol. 148(2), 333–356 (2013). doi:10.1007/s10546-013-9823-0

    Article  ADS  Google Scholar 

  • Y. Shao, W. Nickling, G. Bergametti, H. Butler, A. Chappell, P. Findlater, J. Gillies, M. Ishizuka, M. Klose, J. Kok, J. Leys, H. Lu, B. Marticorena, G. McTainsh, C. McKenna-Neuman, G. Okin, C. Strong, N. Webb, A tribute to M.R. Raupach for contributions to aeolian fluid dynamics. Aeolian Res. 19 Part A, 37–54 (2015). doi:10.1016/j.aeolia.2015.09.004

    Article  ADS  Google Scholar 

  • P.C. Sinclair, The lower structure of dust devils. J. Atmos. Sci. 30(8), 1599–1619 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  • W.C. Skamarock, J.B. Klemp, A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008). doi:10.1016/j.jcp.2007.01.037

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • J. Smagorinsky, General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  ADS  Google Scholar 

  • Z. Sorbjan, Statistics of shallow convection on Mars based on large-eddy simulations. Part 1: shearless conditions. Bound.-Layer Meteorol. 123, 121–142 (2007). doi:10.1007/s10546-006-9128-7

    Article  ADS  Google Scholar 

  • A. Spiga, Elements of comparison between martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection. Planet. Space Sci. 59, 915–922 (2011). doi:10.1016/j.pss.2010.04.025

    Article  ADS  Google Scholar 

  • A. Spiga, F. Forget, A new model to simulate the martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res., Planets 114, 02009 (2009). doi:10.1029/2008JE003242

    Article  ADS  Google Scholar 

  • A. Spiga, S.R. Lewis, Martian mesoscale and microscale wind variability of relevance for dust lifting. Int. J. Mars Sci. Explor. 5, 146–158 (2010). doi:10.1555/mars.2010.0006

    Google Scholar 

  • A. Spiga, F. Forget, S.R. Lewis, D.P. Hinson, Structure and dynamics of the convective boundary layer on mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010). doi:10.1002/qj.563

    Article  ADS  Google Scholar 

  • P.P. Sullivan, E.G. Patton, The effect of mesh resolution on convective boundary layer statistics and structures generated by large-eddy simulation. J. Atmos. Sci. 68, 2395–2415 (2011). doi:10.1175/JAS-D-10-05010.1

    Article  ADS  Google Scholar 

  • T. Takemi, An eddy-resolving simulation of the diurnal variation of fair-weather convection and tracer transport. Atmos. Res. 89, 270–282 (2008). doi:10.1016/j.atmosres.2008.02.012

    Article  Google Scholar 

  • P.C. Thomas, P.J. Gierasch, Dust devils on Mars. Science 230, 175–177 (1985)

    Article  ADS  Google Scholar 

  • A.D. Toigo, M.I. Richardson, Meteorology of proposed Mars exploration rover landing sites. J. Geophys. Res., Planets 108(E12), 8092 (2003). doi:10.1029/2003JE002064

    Article  ADS  Google Scholar 

  • A.D. Toigo, M.I. Richardson, S.P. Ewald, P.J. Gierasch, Numerical simulation of martian dust devils. J. Geophys. Res., Planets 108, 5047 (2003). doi:10.1029/2002JE002002

    Article  ADS  Google Scholar 

  • D. Tyler, J.R. Barnes, Mesoscale modeling of the circulation in the Gale crater region: an investigation into the complex forcing of convective boundary layer depths. Mars 8, 58–77 (2013). doi:10.1555/mars.2013.0003

    ADS  Google Scholar 

  • D. Tyler, J.R. Barnes, Convergent crater circulations on mars: influence on the surface pressure cycle and the depth of the convective boundary layer. Geophys. Res. Lett. 42 (2015). doi:10.1002/2015GL064957

  • D. Tyler, J.R. Barnes, E.D. Skyllingstad, Mesoscale and large-eddy simulation model studies of the martian atmosphere in support of Phoenix. J. Geophys. Res., Planets 113(E12) (2008). doi:10.1029/2007JE003012

  • M. Weißmüller, F. Hoffmann, , S. Raasch, Towards large-eddy simulations of dust devils with observed intensity: effects of numerics and surface heterogeneities. J. Geophys. Res. (2016, submitted)

  • Y.Z. Zhao, Z.L. Gu, Y.Z. Yu, Y. Ge, Y. Li, X. Feng, Mechanism and large eddy simulation of dust devils. Atmos.-Ocean 42(1), 61–84 (2004). doi:10.3137/ao.420105

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the logistic and financial help of the International Space Science Institute (ISSI, Bern, Switzerland) for the organization of a “dust devils” international workshop that led to the writing of this review chapter. We are indebted to two anonymous reviewers and associate editor Ralph Lorenz for constructive comments which helped to improve this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aymeric Spiga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiga, A., Barth, E., Gu, Z. et al. Large-Eddy Simulations of Dust Devils and Convective Vortices. Space Sci Rev 203, 245–275 (2016). https://doi.org/10.1007/s11214-016-0284-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11214-016-0284-x

Keywords

Navigation