Skip to main content

Advertisement

Log in

Seed coat treatment by plant-growth-promoting rhizobacteria Lysobacter antibioticus 13–6 enhances maize yield and changes rhizosphere bacterial communities

  • ORIGINAL PAPER
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The plant rhizosphere is a major habitat for diverse microorganisms because of its heterogeneous microenvironment. It is well known that an imbalance in rhizosphere microorganisms has direct and indirect effects on soil fertility and plant health. In this study, we investigated the impact of Lysobacter antibioticus 13–6 seed coat treatment on the soil physicochemical properties, plant growth, and bacterial community composition of maize plants in both in vivo and in vitro experiments, using high-throughput amplicon sequencing of 16S rRNA. Under in vitro conditions, we determined that L. antibioticus 13–6 has the ability to solubilize P, hydrolyze cellulose, and synthesize indole acetic acid. Furthermore, under in vivo conditions, L. antibioticus 13–6 significantly improved the soil physicochemical properties and enhanced the root length, stalk height, dry weight of root and stalk, grain yield, and chlorophyll contents by successful colonization in the rhizosphere of maize plants. The results of high-throughput amplicon sequencing of 16S rRNA demonstrated that L. antibioticus 13–6 significantly changed the diversity and composition of the rhizosphere bacterial communities. The relative abundance of Gammaproteobacteria, Gemmatimonadetes, and Bacteroidetes at the phylum level and Streptomyces, Lysobacter, and Nitrospira at the genus level significantly increased in the rhizosphere of L. antibioticus 13–6 seed coat-treated plants. Co-occurrence networks analysis revealed that the rhizosphere of L. antibioticus 13–6 seed coat-treated plants had fewer negative correlations and less competition for resources among bacterial communities. Genome analysis of L. antibioticus 13–6 revealed that the genome of L. antibioticus 13–6 encodes genes related to indole acetic acid synthesis, chitinase decomposition, and P solubilization, making it one of the most potent plant growth-promoting bacteria. Overall, this study demonstrated the potential of L. antibioticus 13–6 as a promising seed coat bioagent for sustainable agriculture and to minimize the utilization of agrochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The raw data related to 16S rRNA sequencing is deposited in the sequence read archive (SRA) in NCBI public database with accession No. PRJNA615109.

References

  • Abdelmoteleb A, Gonzalez-Mendoza D (2020) Isolation and identification of phosphate solubilizing Bacillus spp. from Tamarix ramosissima rhizosphere and their effect on growth of Phaseolus vulgaris under salinity stress. Geomicrobiol J 37:901–908

    Article  CAS  Google Scholar 

  • Adesemoye A, Torbert H, Kloepper J (2010) Increased plant uptake of nitrogen from 15N-depleted fertilizer using plant growth-promoting rhizobacteria. Appl Soil Ecol 46:54–58

    Article  Google Scholar 

  • Ahmed A, Aftab S, Hussain S, Nazir Cheema H, Liu W, Yang F, Yang W (2020) Nutrient accumulation and distribution assessment in response to potassium application under maize–soybean intercropping system. Agronomy 10:725

    Article  Google Scholar 

  • Ahmed W, Yang J, Tan Y, Munir S, Liu Q, Zhang J, Ji G, Zhao Z (2022) Ralstonia solanacearum, a deadly pathogen: Revisiting the bacterial wilt biocontrol practices in tobacco and other Solanaceae. Rhizosphere 21:100479

    Article  Google Scholar 

  • Alavo TBC, Boukari S, Fayalo DG, Bochow H (2015) Cotton fertilization using PGPR Bacillus amyloliquefaciens FZB42 and compost: impact on insect density and cotton yield in North Benin. West Africa Cogent Food Agric 1:1063829

    Article  Google Scholar 

  • Amanullah H, Marwat K, Shah P, Maula N, Arifullah S (2009) Nitrogen levels and its time of application influence leaf area, height and biomass of maize planted at low and high density. Pak J Bot 41:761–768

    Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M (2015) Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528:364–369

    Article  CAS  PubMed  Google Scholar 

  • Bai Y-C, Li B-X, Xu C-Y, Raza M, Wang Q, Wang Q-Z, Fu Y-N, Hu J-Y, Imoulan A, Hussain H, Xu Y-J (2022) Intercropping walnut and tea: Effects on soil Nutrients, enzyme activity and microbial communities. Front Microbiol 13:852342

    Article  PubMed  PubMed Central  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE, (2013) A proposal for isolating and testing phosphate-solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2

    Article  Google Scholar 

  • Basu A, Prasad P, Das SN, Kalam S, Sayyed R, Reddy M, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13:1140

    Article  CAS  Google Scholar 

  • Beeckman F, Motte H, Beeckman T (2018) Nitrification in agricultural soils: impact, actors and mitigation. Curr Opin Biotechnol 50:166–173

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Q, Zhou G, Ahmed W, Cao Y, Zhao M, Li Z, Zhao Z (2021) Study on the relationship between bacterial wilt and rhizospheric microbial diversity of flue-cured tobacco cultivars. Eur J Plant Pathol 160:265–276

    Article  CAS  Google Scholar 

  • Chen C, Zhang J, Lu M, Qin C, Chen Y, Yang L, Huang Q, Wang J, Shen Z, Shen Q (2016) Microbial communities of an arable soil treated for 8 years with organic and inorganic fertilizers. Biol Fertil Soils 52:455–467

    Article  CAS  Google Scholar 

  • Chen L, Hao Z, Li K, Sha Y, Wang E, Sui X, Mi G, Tian C, Chen W (2021) Effects of growth-promoting rhizobacteria on maize growth and rhizosphere microbial community under conservation tillage in Northeast China. Microb Biotechnol 14:535–550

    Article  CAS  PubMed  Google Scholar 

  • Chu TN, Bui LV, Hoang MTT (2020) Pseudomonas PS01 isolated from maize rhizosphere alters root system architecture and promotes plant growth. Microorganisms 8:471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo-and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    Article  CAS  Google Scholar 

  • Cordovez V, Dini-Andreote F, Carrión VJ, Raaijmakers JM (2019) Ecology and evolution of plant microbiomes. Annu Rev Microbiol 73:69–88

    Article  CAS  PubMed  Google Scholar 

  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA (2012) The application of ecological theory toward an understanding of the human microbiome. Science 336:1255–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui W, He P, Munir S, He P, Li X, Li Y, Wu J, Wu Y, Yang L, He P (2019) Efficacy of plant growth promoting bacteria Bacillus amyloliquefaciens B9601–Y2 for biocontrol of southern corn leaf blight. Biol Control 139:104080

    Article  CAS  Google Scholar 

  • de Bruijn I, Cheng X, de Jager V, Expósito RG, Watrous J, Patel N, Postma J, Dorrestein PC, Kobayashi D, Raaijmakers JM (2015) Comparative genomics and metabolic profiling of the genus Lysobacter. BMC Genomics 16:1–16

    Article  Google Scholar 

  • Duca D, Rose DR, Glick BR (2014) Characterization of a nitrilase and a nitrile hydratase from Pseudomonas sp. strain UW4 that converts indole-3-acetonitrile to indole-3-acetic acid. Appl Environ Microbiol 80:4640–4649

    Article  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erlacher A, Cardinale M, Grosch R, Grube M, Berg G (2014) The impact of the pathogen Rhizoctonia solani and its beneficial counterpart Bacillus amyloliquefaciens on the indigenous lettuce microbiome. Front Microbiol 5:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Etesami H, Adl SM (2020) Plant growth-promoting rhizobacteria (PGPR) and their action mechanisms in availability of nutrients to plants. Phyto Microbiome Stress Regul: 147–203.

  • Fu L, Li H, Wei L, Yang J, Liu Q, Wang Y, Wang X, Ji G (2018) Antifungal and biocontrol evaluation of four Lysobacter strains against clubroot disease. Indian J Microbiol 58:353–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gai X, Dong H, Wang S, Liu B, Zhang Z, Li X, Gao Z (2018) Infection cycle of maize stalk rot and ear rot caused by Fusarium verticillioides. PLoS ONE 13:e0201588

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardener BBM, Kim IS, Kim KY, Kim YC (2014) Draft genome sequence of a chitinase-producing biocontrol bacterium, Lysobacter antibioticus HS124. Res Plant Dis 20:216–218

    Article  Google Scholar 

  • He P, Cui W, He P, Munir S, Li X, Wu Y, Li Y, Asad S, He P, He Y (2021) Bacillus amyloliquefaciens subsp plantarum KC-1 inhibits Zantedeschia hybrida soft rot and promote plant growth. Biol Control 154:104500

    Article  CAS  Google Scholar 

  • Ji G-H, Wei L-F, He Y-Q, Wu Y-P, Bai X-H (2008) Biological control of rice bacterial blight by Lysobacter antibioticus strain 13–1. Biol Control 45:288–296

    Article  Google Scholar 

  • Jiang J, Guiza Beltran D, Schacht A, Wright S, Zhang L, Du L (2018) Functional and structural analysis of phenazine O-methyltransferase LaPhzM from Lysobacter antibioticus OH13 and one-pot enzymatic synthesis of the antibiotic myxin. ACS Chem Biol 13:1003–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428:726–731

    Article  CAS  PubMed  Google Scholar 

  • Kim Y-T, Monkhung S, Lee YS, Kim KY (2019) Effects of Lysobacter antibioticus HS124, an effective biocontrol agent against Fusarium graminearum, on crown rot disease and growth promotion of wheat. Can J Microbiol 65:904–912

    Article  CAS  PubMed  Google Scholar 

  • Ko H-S, Jin R-D, Krishnan HB, Lee S-B, Kim K-Y (2009) Biocontrol ability of Lysobacter antibioticus HS124 against Phytophthora blight is mediated by the production of 4-hydroxyphenylacetic acid and several lytic enzymes. Curr Microbiol 59:608–615

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Kumar P (2019) Pesticides in agriculture and environment: Impacts on human health. Contam Agric Environ: Health Risks and Rem 1:76

    Google Scholar 

  • Kumari B, Mallick MA, Solanki MK, Solanki AC, Hora A, Guo W (2019) Plant growth promoting rhizobacteria (PGPR): Modern prospects for sustainable agriculture. In: Ansari RA, Mahmood I (eds) Plant Health Under Biotic Stress: Microb Interact. Springer Singapore

    Google Scholar 

  • Laborda P, Ling J, Chen X, Liu F (2018) ACC deaminase from Lysobacter gummosus OH17 can promote root growth in Oryza sativa Nipponbare plants. J Agric Food Chem 66:3675–3682

    Article  CAS  PubMed  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci 112:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Wang K, Xie R, Ming B, Zhao L, Li S, Hou P, Li S (2017) Corn kernel weight and moisture content after physiological maturity in field. Sci Agric Sinica 50:2052–2060

    Google Scholar 

  • Lina F, Ting W, Lanfang W, Jun Y, Qi L, Yating W, Xing W, Guanghai J (2018) Specific detection of Lysobacter antibioticus strains in agricultural soil using PCR and real-time PCR. FEMS Microbiol Lett 365:fny219

    Article  Google Scholar 

  • Ling Q, Huang W, Jarvis P (2011) Use of a SPAD-502 meter to measure leaf chlorophyll concentration in Arabidopsis thaliana. Photosynth Res 107:209–214

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Pan X, Li J (2015) A 1961–2010 record of fertilizer use, pesticide application and cereal yields: a review. Agron Sustainable Dev 35:83–93

    Article  Google Scholar 

  • Liu Q, Yang J, Ahmed W, Wan X, Wei L, Ji G (2022) Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13–6 against Xanthomonas oryzae pv. oryzicola. J Microbiol 60:496–510

    Article  CAS  PubMed  Google Scholar 

  • Mehmood U, Inam-ul-Haq M, Saeed M, Altaf A, Azam F, Hayat S (2018) A brief review on plant growth promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Prot 2:77–82

    Google Scholar 

  • Mena-Violante HG, Olalde-Portugal V (2007) Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci Hortic 113:103–106

    Article  CAS  Google Scholar 

  • Messina CD, Podlich D, Dong Z, Samples M, Cooper M (2011) Yield–trait performance landscapes: from theory to application in breeding maize for drought tolerance. J Exp Bot 62:855–868

    Article  CAS  PubMed  Google Scholar 

  • Olowe OM, Olawuyi OJ, Sobowale AA, Odebode AC (2018) Role of arbuscular mycorrhizal fungi as biocontrol agents against Fusarium verticillioides causing ear rot of Zea mays L. (Maize). Curr Plant Biol 15:30–37

    Article  Google Scholar 

  • Postma J, Schilder MT, van Hoof RA (2011) Indigenous populations of three closely related Lysobacter spp. in agricultural soils using real-time PCR. Microb Ecol 62:948–958

    Article  PubMed  PubMed Central  Google Scholar 

  • Puopolo G, Sonego P, Engelen K, Pertot I (2014) Draft genome sequence of Lysobacter capsici AZ78, a bacterium antagonistic to plant-pathogenic oomycetes. Genome Announce 2:e00325-e314

    Article  Google Scholar 

  • Puopolo G, Raio A, Zoina A (2010) Identification and charactherization of Lysobacter capsici strain PG4: a new plant health-promoting rhizobacterium. J Plant Pathol: 157–164.

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2012) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596

    Article  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM (2015) The minimal rhizosphere microbiome. Principles of plant-microbe interactions. Springer 411–417.

  • Rahim I, Zamzam S, Suherman S, Syamsia S, Meriem S, Yunarti Y, Nasruddin A (2019) Enhance content of leaf chlorophylls and the primary root diameter of shallot (Allium cepa L.) with seed coating by rot fungi. Int J Agric System 7:18–26

    Google Scholar 

  • Rana A, Saharan B, Nain L, Prasanna R, Shivay YS (2012) Enhancing micronutrient uptake and yield of wheat through bacterial PGPR consortia. Soil Sci Plant Nutr 58:573–582

    Article  CAS  Google Scholar 

  • Scott JC, Greenhut IV, Leveau JH (2013) Functional characterization of the bacterial iac genes for degradation of the plant hormone indole-3-acetic acid. J Chem Ecol 39:942–951

    Article  CAS  PubMed  Google Scholar 

  • Van Bueren EL, Jones SS, Tamm L, Murphy KM, Myers JR, Leifert C, Messmer M (2011) The need to breed crop varieties suitable for organic farming, using wheat, tomato and broccoli as examples: A review. NJAS-Wageningen J Life Sci 58:193–205

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vurukonda SSKP, Giovanardi D, Stefani E (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  PubMed  PubMed Central  Google Scholar 

  • War AR, Taggar GK, War MY, Hussain B (2016) Impact of climate change on insect pests, plant chemical ecology, tritrophic interactions and food production. Int J Clin Biol Sci 1:16–29

    Google Scholar 

  • Wei L, Yang J, Ahmed W, Xiong X, Liu Q, Huang Q, Ji G (2021) Unraveling the association between metabolic changes in inter-genus and intra-genus bacteria to mitigate clubroot disease of Chinese cabbage. Agronomy 11:2424

    Article  CAS  Google Scholar 

  • Xiao L, Gb L, Jy Z, Xue S (2016) Long-term effects of vegetational restoration on soil microbial communities on the loess plateau of China. Restor Ecol 24:794–804

    Article  Google Scholar 

  • Zhang J, Liu Y-X, Zhang N, Hu B, Jin T, Xu H, Qin Y, Yan P, Zhang X, Guo X (2019a) NRT1. 1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Adams JM, Dumont MG, Li Y, Shi Y, He D, He J-S, Chu H (2019b) Distinct methanotrophic communities exist in habitats with different soil water contents. Soil Biol Biochem 132:143–152

    Article  CAS  Google Scholar 

  • Zhang J, Wei L, Yang J, Ahmed W, Wang Y, Fu L, Ji G (2020) Probiotic consortia: Reshaping the rhizospheric microbiome and its role in suppressing root-rot disease of Panax notoginseng. Front Microbiol 11:701

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Ahmed W, Dai Z, Zhou X, He Z, Wei L, Ji G (2022) Microbial consortia: An engineering tool to suppress clubroot of Chinese cabbage by changing the rhizosphere bacterial community composition. Biology 11:918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou L, Li M, Yang J, Wei L, Ji G (2014) Draft genome sequence of antagonistic agent Lysobacter antibioticus 13–6. Genome Announce 2:e00566-e514

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 32260701, No. 32060601), the Yunnan Ten Thousand Talents Plan Leading Talents of Industrial Technology Project of China (YNWR-CYJS-2019-046), and the National Key R&D Program of China (2019YFD1002000). 

Author information

Authors and Affiliations

Authors

Contributions

G.J. and L.W. conceived and designed the experiments. Z.D., W.A., X.Y., and J.Z. performed the experiments and collected the data. Z.D., W.A., and J.Y. analyzed the data. Z.D. and W.A. illustrated the figures and wrote the first draft of the manuscript. W.A. and G.J. revised the manuscript. All authors contributed to the final draft of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Lanfang Wei or Guanghai Ji.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 260 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Z., Ahmed, W., Yang, J. et al. Seed coat treatment by plant-growth-promoting rhizobacteria Lysobacter antibioticus 13–6 enhances maize yield and changes rhizosphere bacterial communities. Biol Fertil Soils 59, 317–331 (2023). https://doi.org/10.1007/s00374-023-01703-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-023-01703-x

Keywords

Navigation