Skip to main content
Log in

Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

The effects of elevated atmospheric carbon dioxide (eCO2) on belowground processes are known to occur directly and indirectly via plants. However, the long-term impact of eCO2 on biochemical properties and processes of agricultural soils in the absence of plants is unclear. The current study investigated whether residue decomposition and the subsequent ‘priming effect’ on soil organic C (SOC) mineralisation were altered in three contrasting soils previously exposed to either ambient CO2 (aCO2; 390 ppm) or eCO2 (550 ppm) using free-air CO2 enrichment (FACE) for 4 years. Surface soils (0–2 cm) of calcisol, luvisol and vertisol were amended (0.5% w w−1) with 13C-labelled field pea (Pisum sativum L. cv. PBA; C:N 20) or wheat (Triticum aestivum cv. Yitpi; C:N 60) residues, and CO2 derived from soil (CO2 soil) and residue (CO2 residue) were quantified over the 96-day incubation study. Field pea decomposition was not affected by soil type or CO2 history, and the decomposition of wheat was similar in all soils previously exposed to aCO2. However, wheat decomposition was increased in luvisol (14.4%), decreased in vertisol (26.7%) or not affected by eCO2 in the calcisol. The relative differences between soils were largely driven by labile N content and the potential to replenish inorganic N via mineralisation. Notably, priming was not influenced by residue type, despite their contrasting N content. In the calcisol, lower basal C mineralisation and C priming under eCO2 were not explained by lower N concentrations. A greater priming effect in field pea–amended vertisol previously exposed to eCO2 than aCO2 was likely due to overcoming the N limitation on microbial C mineralisation in this soil. Overall, the study highlighted that C mineralisation was mainly determined by soil N status, less by CO2 history and least by residue quality (C:N ratio).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abiven S, Recous S, Reyes V, Oliver R (2005) Mineralisation of C and N from root, stem and leaf residues in soil and role of their biochemical quality. Biol Fertil Soils 42:119–128

    Article  CAS  Google Scholar 

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–371

    PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ 30:258–270

    CAS  PubMed  Google Scholar 

  • Allard V, Robin C, Newton PCD, Lieffering M, Soussana JF (2006) Short and long-term effects of elevated CO2 on Lolium perenne rhizodeposition and its consequences on soil organic matter turnover and plant N yield. Soil Biol Biochem 38:1178–1187

    Article  CAS  Google Scholar 

  • Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci U S A 105:11512–11519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldock JA, Wheeler I, McKenzie N, McBrateny A (2012) Soils and climate change: potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture. Crop Pasture Sci 63:269–283

    Article  CAS  Google Scholar 

  • Blagodatskaya E, Blagodatsky S, Dorodnikov M, Kuzyakov Y (2010) Elevated atmospheric CO2 increases microbial growth rates in soil: results of three CO2 enrichment experiments. Glob Chang Biol 16:836–848

    Article  Google Scholar 

  • Blagodatskaya E, Kuzyakov Y (2013) Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol Biochem 67:192–211

    Article  CAS  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Butterly CR, Armstrong R, Chen D, Tang C (2015) Carbon and nitrogen partitioning of wheat and field pea grown with two nitrogen levels under elevated CO2. Plant Soil 391:367–382

    Article  CAS  Google Scholar 

  • Butterly CR, Armstrong RD, Chen D, Tang C (2016a) Free-air CO2 enrichment (FACE) reduces the inhibitory effect of soil nitrate on N2 fixation of Pisum sativum L. Ann Bot 117:177–185

    Article  CAS  PubMed  Google Scholar 

  • Butterly CR, Bünemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol Biochem 41:1406–1416

    Article  CAS  Google Scholar 

  • Butterly CR, Phillips LA, Wiltshire JL, Franks AE, Armstrong RD, Chen D, Mele PM, Tang C (2016b) Long-term effects of elevated CO2 on carbon and nitrogen functional capacity of microbial communities in three contrasting soils. Soil Biol Biochem 97:157–167

    Article  CAS  Google Scholar 

  • Butterly CR, Wang X, Armstrong RD, Chen D, Tang C (2016c) Elevated CO2 induced rhizosphere effects on the decomposition and N recovery from crop residues. Plant Soil 408:55–71

    Article  CAS  Google Scholar 

  • Cabrera ML, Beare MH (1993) Alkaline persulfate oxidation for determining total nitrogen in microbial biomass extracts. Soil Sci Soc Am J 57:1007–1012

    Article  CAS  Google Scholar 

  • Carney KM, Hungate BA, Drake BG, Megonigal JP (2007) Altered soil microbial community at elevated CO2 leads to loss of soil carbon. Proc Natl Acad Sci U S A 104:4990–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo Y, Dijkstra F, Pendall E, LeCain D, Tucker C (2014) Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry. Biogeochemistry 117:229–240

    Article  CAS  Google Scholar 

  • Chen R, Senbayram M, Blagodatsky S, Myachina O, Dittert K, Lin X, Blagodatskaya E, Kuzyakov Y (2014) Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories. Glob Chang Biol 20:2356–2367

    Article  PubMed  Google Scholar 

  • Cheng L, Booker FL, Tu C, Burkey KO, Zhou LS, Shew HD, Rufty TW, Hu SJ (2012) Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337:1084–1087

    Article  CAS  PubMed  Google Scholar 

  • Cheng WX (1999) Rhizosphere feedbacks in elevated CO2. Tree Physiol 19:313–320

    Article  PubMed  Google Scholar 

  • Cheng WX, Johnson DW (1998) Elevated CO2, rhizosphere processes, and soil organic matter decomposition. Plant Soil 202:167–174

    Article  CAS  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • de Graaff M-A, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  PubMed  Google Scholar 

  • de Graaff M-A, van Groenigen K-J, Six J, Hungate B, van Kessel C (2006) Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis. Glob Chang Biol 12:2077–2091

    Article  Google Scholar 

  • de Graaff MA, Six J, Harris D, Blum H, van Kessel C (2004) Decomposition of soil and plant carbon from pasture systems after 9 years of exposure to elevated CO2: impact on C cycling and modeling. Glob Chang Biol 10: 1922–1935

  • de Graaff MA, Six J, van Kessel C (2007) Elevated CO2 increases nitrogen rhizodeposition and microbial immobilization of root-derived nitrogen. New Phytol 173:778–786

    Article  PubMed  Google Scholar 

  • de Graaff MA, Van Kessel C, Six J (2009) Rhizodeposition-induced decomposition increases N availability to wild and cultivated wheat genotypes under elevated CO2. Soil Biol Biochem 41:1094–1103

    Article  Google Scholar 

  • Drigo B, Kowalchuk GA, Knapp BA, Pijl AS, Boschker HTS, van Veen JA (2013) Impacts of 3 years of elevated atmospheric CO2 on rhizosphere carbon flow and microbial community dynamics. Glob Chang Biol 19: 621–636

  • Drissner D, Blum H, Tscherko D, Kandeler E (2007) Nine years of enriched CO2 changes the function and structural diversity of soil microorganisms in a grassland. Eur J Soil Sci 58:260–269

    Article  Google Scholar 

  • Fang HJ, Cheng SL, Lin ED, Yu GR, Niu SL, Wang YS, Xu MJ, Dang XS, Li LS, Wang L (2015) Elevated atmospheric carbon dioxide concentration stimulates soil microbial activity and impacts water-extractable organic carbon in an agricultural soil. Biogeochemistry 122:253–267

    Article  CAS  Google Scholar 

  • Fontaine S, Bardoux G, Abbadie L, Mariotti A (2004) Carbon input to soil may decrease soil carbon content. Ecol Lett 7:314–320

    Article  Google Scholar 

  • Guenet B, Lenhart K, Leloup J, Giusti-Miller S, Pouteau V, Mora P, Nunan N, Abbadie L (2012) The impact of long-term CO2 enrichment and moisture levels on soil microbial community structure and enzyme activities. Geoderma 170:331–336

    Article  CAS  Google Scholar 

  • Hayden HL, Mele PM, Bougoure DS, Allan CY, Norng S, Piceno YM, Brodie EL, DeSantis TZ, Andersen GL, Williams AL, Hovenden MJ (2012) Changes in the microbial community structure of bacteria, archaea and fungi in response to elevated CO2 and warming in an Australian native grassland soil. Environ Microbiol 14:3081–3096

    Article  CAS  PubMed  Google Scholar 

  • He Z, Xiong J, Kent AD, Deng Y, Xue K, Wang G, Wu L, Van Nostrand JD, Zhou J (2014) Distinct responses of soil microbial communities to elevated CO2 and O3 in a soybean agro-ecosystem. ISME J 8: 714–726

  • He ZL, Xu MY, Deng Y, Kang SH, Kellogg L, Wu LY, Van Nostrand JD, Hobbie SE, Reich PB, Zhou JZ (2010) Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. Ecol Lett 13: 564–575

  • Heanes DL (1984) Determination of total organic-C in soils by an improved chromic acid digestion and spectrophotometric procedure. Commun Soil Sci Plant Anal 15:1191–1213

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: impacts, adaptation and vulnerability. Part A: global and sectoral aspects. In: CB field, VR Barros, DJ Dokkenet al (Eds) Working group II contribution to the intergovernmental panel on climate change fifth assessment report. Cambridge University Press, Cambridge, United Kingdom, pp 1–1967

  • Isbell RF (1996) The Australian soil classification. CSIRO Publishing, Melbourne

    Google Scholar 

  • Jensen ES (1997) Nitrogen immobilization and mineralization during initial decomposition of 15N-labelled pea and barley residues. Biol Fertil Soils 24:39–44

    Article  CAS  Google Scholar 

  • Jin J, Tang C, Armstrong R, Butterly C, Sale P (2013) Elevated CO2 temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 368:315–328

    Article  CAS  Google Scholar 

  • Joergensen RG (1996) The fumigation-extraction method to estimate soil microbial biomass: calibration of the kEC value. Soil Biol Biochem 28:25–31

    Article  CAS  Google Scholar 

  • Kimball BA, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Article  Google Scholar 

  • Kou T, Zhu J, Xie Z, Hasegawa T, Heiduk K (2007) Effect of elevated atmospheric CO2 concentration on soil and root respiration in winter wheat by using a respiration partitioning chamber. Plant Soil 299:237–249

    Article  CAS  Google Scholar 

  • Lam SK, Norton R, Armstrong R, Chen D (2014) Increased microbial activity under elevated [CO2] does not enhance residue decomposition in a semi-arid cropping system in Australia. Soil Biol Biochem 72:97–99

    Article  CAS  Google Scholar 

  • Liu Y, Zhang H, Xiong M, Li F, Li L, Wang G, Pan G (2017) Abundance and composition response of wheat field soil bacterial and fungal communities to elevated CO2 and increased air temperature. Biol Fertil Soils 53:3–8

    Article  CAS  Google Scholar 

  • Luo Y, Su B, Currie WS, Dukes JS, Finzi AC, Hartwig U, Hungate B, McMurtrie RE, Oren R, Parton WJ, Pataki DE, Shaw MR, Zak DR, Field CB (2004) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience 54:731–739

    Article  Google Scholar 

  • Marhan S, Derain D, Erbs M, Kuzyakov Y, Fangmeier A, Kandeler E (2008) Soil organic matter mineralization and residue decomposition of spring wheat grown under elevated CO2 atmosphere. Agric Ecosyst Environ 123:63–68

    Article  CAS  Google Scholar 

  • Martens R, Heiduk K, Pacholski A, Weigel HJ (2009) Repeated 14CO2 pulse-labelling reveals an additional net gain of soil carbon during growth of spring wheat under free air carbon dioxide enrichment (FACE). Soil Biol Biochem 41:2422–2429

    Article  CAS  Google Scholar 

  • Mollah M, Norton R, Huzzey J (2009) Australian grains free-air carbon dioxide enrichment (AGFACE) facility: design and performance. Crop Pasture Sci 60:697–707

    Article  CAS  Google Scholar 

  • Norby RJ, Cotrufo MF, Ineson P, O'Neill EG, Canadell JG (2001) Elevated CO2, litter chemistry, and decomposition: a synthesis. Oecologia 127:153–165

    Article  PubMed  Google Scholar 

  • Norby RJ, Zak DR (2011) Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu Rev Ecol Evol Syst 42:181–203

    Article  Google Scholar 

  • Pendall E, Bridgham S, Hanson PJ, Hungate B, Kicklighter DW, Johnson DW, Law BE, Luo YQ, Megonigal JP, Olsrud M, Ryan MG, Wan SQ (2004) Below-ground process responses to elevated CO2 and temperature: a discussion of observations, measurement methods, and models. New Phytol 162:311–322

    Article  Google Scholar 

  • Pendall E, Leavitt SW, Brooks T, Kimball BA, Pinter PJ, Wall GW, LaMorte RL, Wechsung G, Wechsung F, Adamsen F, Matthias AD, Thompson TL (2001) Elevated CO2 stimulates soil respiration in a FACE wheat field. Basic Appl Ecol 2:193–201

    Article  CAS  Google Scholar 

  • Procter AC, Ellis JC, Fay PA, Polley HW, Jackson RB (2014) Fungal community responses to past and future atmospheric CO2 differ by soil type. Appl Environ Microbiol 80:7364–7377

    Article  PubMed  PubMed Central  Google Scholar 

  • Reinsch S, Ambus P, Thornton B, Paterson E (2013) Impact of future climatic conditions on the potential for soil organic matter priming. Soil Biol Biochem 65:133–140

    Article  CAS  Google Scholar 

  • Sanderman J, Maddern T, Baldock J (2014) Similar composition but differential stability of mineral retained organic matter across four classes of clay minerals. Biogeochemistry 121:409–424

    Article  CAS  Google Scholar 

  • Shahbaz M, Kuzyakov Y, Sanaullah M, Heitkamp F, Zelenev V, Kumar A, Blagodatskaya E (2017) Microbial decomposition of soil organic matter is mediated by quality and quantity of crop residues: mechanisms and thresholds. Biol Fertil Soils 53:287–301

    Article  CAS  Google Scholar 

  • Six J, Paustian K, Elliott ET, Combrink C (2000) Soil structure and organic matter I. distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci Soc Am J 64:681–689

    Article  CAS  Google Scholar 

  • Sparling G, Zhu C (1993) Evaluation and calibration of biochemical methods to measure microbial biomass C and N in soils from Western Australia. Soil Biol Biochem 25:1793–1801

    Article  Google Scholar 

  • Sulman BN, Phillips RP, Oishi AC, Shevliakova E, Pacala SW (2014) Microbe-driven turnover offsets mineral-mediated storage of soil carbon under elevated CO2. Nat Clim Chang 4:1099–1102

    Article  CAS  Google Scholar 

  • Torbert HA, Prior SA, Rogers HH, Wood CW (2000) Review of elevated atmospheric CO2 effects on agro-ecosystems: residue decomposition processes and soil C storage. Plant Soil 224:59–73

    Article  CAS  Google Scholar 

  • van Groenigen K-J, Six J, Hungate BA, de Graaff M-A, van Breemen N, van Kessel C (2006) Element interactions limit soil carbon storage. Proc Natl Acad Sci U S A 103: 6571–6574

  • van Groenigen KJ, Qi X, Osenberg CW, Luo YQ, Hungate BA (2014) Faster decomposition under increased atmospheric CO2 limits soil carbon storage. Science 344:508–509

    Article  PubMed  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707

    Article  CAS  Google Scholar 

  • Viswanath T, Pal D, Purakayastha TJ (2010) Elevated CO2 reduces rate of decomposition of rice and wheat residues in soil. Agric Ecosyst Environ 139:557–564

    Article  CAS  Google Scholar 

  • WRB IWG (2014) World reference base for soil resources. International soil classification system for naming soils and creating legends for soil maps. FAO, Rome

  • Xu MY, He ZL, Deng Y, Wu LY, van Nostrand JD, Hobbie SE, Reich PB, Zhou JZ (2013) Elevated CO2 influences microbial carbon and nitrogen cycling. BMC Microbiol 13: 124

  • Yang Y, Luo Y, Lu M, Schaedel C, Han W (2011) Terrestrial C:N stoichiometry in response to elevated CO2 and N addition: a synthesis of two meta-analyses. Plant Soil 343:393–400

    Article  CAS  Google Scholar 

  • Zibilske LM (1994) Carbon mineralization methods of soil analysis, part 2 microbial and biochemical properties. Soil Science Society of America, Madison, WI, pp 835–863

Download references

Acknowledgements

We are grateful to Kaien Ra for her excellent technical support, Leanne Lisle for performing the IRMS analyses and Patrick Bloye who worked on this project as part of his Honours project. The SoilFACE facility is part of The Australian Grains Free Air CO2 Enrichment (AGFACE) facility, which is jointly operated by The University of Melbourne and DEDJTR with funding from the Grains Research and Development Corporation (GRDC) and the Australian Government Department of Agriculture. We thank the SoilFACE technical team for managing the field experiment and Mahabubur Mollah for the FACE infrastructure.

Funding

This research was supported by an Australian Research Council Linkage Project (LP100200757) and was conducted the Department of Economic Development, Jobs, Transport and Resources (DEDJTR), Victoria at Horsham.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Clayton R. Butterly or Caixian Tang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butterly, C.R., Armstrong, R.D., Chen, D. et al. Residue decomposition and soil carbon priming in three contrasting soils previously exposed to elevated CO2. Biol Fertil Soils 55, 17–29 (2019). https://doi.org/10.1007/s00374-018-1321-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-018-1321-6

Keywords

Navigation