Skip to main content
Log in

Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Previous studies have shown that phosphorus addition to P-limited soils increases gaseous N loss. A possible explanation for this phenomenon is element stoichiometry (specifically of C:N:P) modifying linked nutrient cycling, leading to enhanced nitrification and denitrification. In this study, we investigated how P stoichiometry influenced the dynamics of soil N-cycle functional genes. Rice seedlings were planted in P-poor soils and incubated with or without P application. Quantitative PCR was then applied to analyze the abundance of ammonia-oxidizing (amoA) and denitrifying (narG nirK, nirS, nosZ) genes in soil. P addition reduced bacterial amoA abundance but increased denitrifying gene abundance. We suggest this outcome is due to P-induced shifts in soil C:P and N:P ratios that limited ammonia oxidization while enhancing P availability for denitrification. Under P application, the rhizosphere effect raised ammonia-oxidizing bacterial abundance (amoA gene) and reduced nirK, nirS, and nosZ in rhizosphere soils. The change likely occurred through greater C input and O2 release from roots, thus altering C availability and redox conditions for microbes. Our results show that P application enhances gaseous N loss potential in paddy fields mainly through stimulating denitrifier growth. We conclude that nutrient availability and elemental stoichiometry are important in regulating microbial gene responses, thereby influencing key ecosystem processes such as denitrification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Armstrong W (1971) Radial oxygen losses from intact rice roots as affected by distance from apex, respiration and waterlogging. Physiol Plant 25:192–197

    Article  Google Scholar 

  • Bolan NS, Baskaran S, Thiagarajan S (1996) An evaluation of the methods of measurement of dissolved organic carbon in soils, manures, sludges, and stream water. Commun Soil Sci Plant Anal 27:2723–2737

    Article  CAS  Google Scholar 

  • Bouranis DL, Chorianopoulou SN, Kollias C, Maniou P, Protonotarios VE, Siyiannis VF, Hawkesford MJ (2006) Dynamics of aerenchyma distribution in the cortex of sulfate-deprived adventitious roots of maize. Ann Bot 97:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Brookes PC, Landman A, Pruden G, Jenkinson DS (1985) Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem 17:837–842

    Article  CAS  Google Scholar 

  • Buchkowski RW, Schmitz OJ, Bradford MA (2015) Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling. Ecology 96:1139–1149

    Article  PubMed  Google Scholar 

  • Chapin FS, Mooney H, Chapin M, Matson P (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cui SY, Xue JF, Chen F, Tang WG, Zhang HL, Tillage RL (2014) Effects on nitrogen leaching and nitrous oxide emission from double-cropped paddy fields. Agron J 106:15–23

    Article  CAS  Google Scholar 

  • Cleveland CC, Liptzin D (2007) C:N:P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85:235–252

    Article  Google Scholar 

  • Ding LJ, Wu JS, Xiao HA, Zhou P, Syers KJ (2012) Mobilisation of inorganic phosphorus induced by rice straw in aggregates of a highly weathered upland soil. J Sci Food Agric 92:1073–1079

    Article  CAS  PubMed  Google Scholar 

  • Duan YH, Shi XJ, Li SL, Sun XF, He XH (2014) Nitrogen use efficiency as affected by phosphorus and potassium in long-term rice and wheat experiments. J Integr Agr 13:588–596

    Article  CAS  Google Scholar 

  • Elser JJ, Dobberfuhl DA, MacKay NA, Schampel JH (1996) Organism size, life history, and N:P stoichiometry: towards a unified view of cellular and ecosystem processes. Bioscience 46:674–684

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 6:540–550

    Article  Google Scholar 

  • Falkowski P, Scholes RJ, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Hogberg P, Linder S (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 5490:291–296

    Article  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ford H, Roberts A, Jones L (2016) Nitrogen and phosphorus co-limitation and grazing moderate nitrogen impacts on plant growth and nutrient cycling in sand dune grassland. Sci Total Environ 542:203–209

    Article  CAS  PubMed  Google Scholar 

  • Fu YQ, Yang XJ, Shen H (2014) The physiological mechanism of enhanced oxidizing capacity of rice (Oryza sativa L.) roots induced by phosphorus deficiency. Acta Physiol Plant 36:179–190

    Article  CAS  Google Scholar 

  • Gama-Rodrigues AC, Sales MVS, Silva PSD, Comerford NB, Cropper WP, Gama-Rodrigues EF (2014) An exploratory analysis of phosphorus transformations in tropical soils using structural equation modeling. Biogeochemistry 118:453–469

    Article  CAS  Google Scholar 

  • Godwin GM, Cotner JB (2015) Aquatic heterotrophic bacteria have highly flexible phosphorus content and biomass stoichiometry. ISME J 9:2324–2327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge TD, Yuan HZ, Zhu HH, Wu XH, Nie SA, Liu C, Tong CL, Wu JS, Brookes P (2012) Biological carbon assimilation and dynamics in a flooded rice-soil system. Soil Biol Biochem 48:39–46

    Article  CAS  Google Scholar 

  • Ge TD, Li BZ, Zhu ZK, Hu YJ, Yuan HZ, Dorodnikov M, Jones DL, Wu JS, Kuzyakov Y (2017) Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biol Fertil Soils 53:37–48

    Article  CAS  Google Scholar 

  • Harrison KA, Bol R, Bardgett RD (2007) Preferences for different nitrogen forms by coexisting plant species and soil microbes. Ecology 88:989–999

    Article  PubMed  Google Scholar 

  • Hartman WH, Richardson CJ (2013) Differential nutrient limitation of soil microbial biomass and metabolic quotients (qCO2): is there a biological stoichiometry of soil microbes? PLoS One 8:e57127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He MZ, Dijkstra FA (2015) Phosphorus addition enhances loss of nitrogen in a phosphorus-poor soil. Soil Biol Biochem 82:99–106

    Article  CAS  Google Scholar 

  • Henry S, Bru D, Stres B, Hallet S, Philippot L (2006) Quantitative detection of the nosZ gene, encoding nitrous oxide reductase, and comparison of the abundances of 16S rRNA, narG, nirK, and nosZ genes in soils. Appl Environ Microbiol 8:5181–5189

    Article  Google Scholar 

  • Hinsinger P (2001) Bioavailability of soil inorganic P in the rhizosphere as affected by root-induced chemical changes: a review. Plant Soil 237:173–195

    Article  CAS  Google Scholar 

  • Ishii S, Ikeda S, Minamisawa K, Senoo K (2011) Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 26:282–292

    Article  PubMed  Google Scholar 

  • Jenkins SN, Murphy DV, Waite IS, Rushton SP, O'Donnell AG (2016) Ancient landscapes and the relationship with microbial nitrification. Sci Rep 6:30733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keerthisinghe G, DeDatta SK, Mengel K (1985) Importance of exchangeable and nonexchangeable soil NH4 + in nitrogen nutrition of lowland rice. Soil Sci 140:194–201

    Article  Google Scholar 

  • Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86

    Article  CAS  Google Scholar 

  • Kuzyakov Y, Xu XL (2013) Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytol 198:656–669

    Article  CAS  PubMed  Google Scholar 

  • Larsen M, Santner J, Oburger E, Wenzel WW, Glud RN (2015) O2 dynamics in the rhizosphere of young rice plants (Oryza sativa L.) as studied by planar optodes. Plant Soil 390:279–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee GH, Kang UG, Park KD, Lee DK, Kim PJ (2008) Long-term fertilization effects on rice productivity and nutrient efficiency in Korean paddy. J Plant Nutr 31:1496–1506

    Article  CAS  Google Scholar 

  • Li J, Li Z, Wang FM, Zou B, Chen Y, Zhao J, Mo QF, Li Y, Li X, Xia H (2015) Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol Fertil Soils 51:207–215

    Article  CAS  Google Scholar 

  • Li YL, Zhang YL, Hu J, Shen QR (2007) Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Soil Biol Biochem 43:417–425

    CAS  Google Scholar 

  • Lin JS, Shi XZ, Lu XX, Yu DS, Wang HJ, Zhao YC, Sun WX (2009) Storage and spatial variation of phosphorus in paddy soils of china. Pedosphere 19:790–798

    Article  CAS  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

    Article  CAS  PubMed  Google Scholar 

  • Meng FQ, Olesen JE, Sun XP, Wu WL (2014) Inorganic nitrogen leaching from organic and conventional rice production on a newly claimed calciustoll in Central Asia. PLoS One 9:e98138

    Article  PubMed  PubMed Central  Google Scholar 

  • Mori T, Ohta S, Ishizuka S, Konda R, Wicaksono A, Heriyanto J, Hardjono A (2010) Effects of phosphorus addition on N2O and NO emissions from soils of an Acacia mangium plantation. Soil Sci Plant Nutr 56:782–788

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531

    Article  CAS  PubMed  Google Scholar 

  • Richardson AE, Barea JM, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    Article  CAS  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A 101:11001–11006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotthauwe JH, Witzel KP, Liesack W (1997) The ammonia monooxygenase structural gene amoA as a functional marker: molecular fin scale analysis of natural ammonia-oxidizing populations. Appl Environ Microbiol 63:4704–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sistla SA, Schimel JP (2012) Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol 196:68–78

    Article  CAS  PubMed  Google Scholar 

  • Sistla SA, Appling AP, Lewandowska AM, Taylor BN, Wolf AA (2015) Stoichiometric flexibility in response to fertilization along gradients of environmental and organismal nutrient richness. Oikos 124:949–959

    Article  CAS  Google Scholar 

  • Smith CJ, Nedwell DB, Dong LF, Osborn AM (2007) Diversity and abundance of nitrate reductase genes (narG and napA), nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments. Appl Environ Microbiol 11:3612–3622

    Article  Google Scholar 

  • Spohn M (2016) Element cycling as driven by stoichiometric homeostasis of soil microorganisms. Basic Appl Ecol 17:471–478

    Article  Google Scholar 

  • Tang YQ, Zhang XY, Li DD, Wang HM, Chen FS, Fu XL, Fang XM, Sun XM, Yu GR (2016) Impacts of nitrogen and phosphorus additions on the abundance and community structure of ammonia oxidizers and denitrifying bacteria in Chinese fir plantations. Soil Biol Biochem 103:284–293

    Article  CAS  Google Scholar 

  • Thion CE, Poirel JD, Cornulier T, De Vries FT, Bardgett RD, Prosser JI (2016) Plant nitrogen-use strategy as a driver of rhizosphere archaeal and bacterial ammonia oxidiser abundance. FEMS Microbiol Ecol 92:fiw091

    Article  PubMed  Google Scholar 

  • Wang FM, Li J, Wang XL, Zhang W, Zou B, Neher DA, Li ZA (2014) Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China. Sci Rep 4:5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Isobe K, Nishizawa T, Zhu L, Shiratori Y, Ohte N, Koba K, Otsuka S, Senoo K (2015) Higher diversity and abundance of denitrifying microorganisms in environments than considered previously. ISME J 9:1954–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Joergensen RG, Pommerening B, Chaussod R, Brookes PC (1990) Measurement of soil microbial biomass C by fumigation-extraction—an automated procedure. Soil Biol Biochem 22:1167–1169

    Article  CAS  Google Scholar 

  • Yao H, Gao Y, Nicol GW, Campbell CD, Prosser JI, Zhang L, Han W, Singh BK (2011) Links between ammonia oxidizer community structure, abundance, and nitrification potential in acidic soils. Appl Environ Microbiol 77:4618–4625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan HZ, Zhu ZK, Liu SL, Ge TD, Jing HZ, Li BZ, Liu Q, Lynn TM, Wu JS, Kuzyakov Y (2016) Microbial utilization of rice root exudates: C-13 labeling and PLFA composition. Biol Fertil Soils 52:615–627

    Article  CAS  Google Scholar 

  • Zechmeister-Boltenstern S, Keiblinger KM, Mooshammer M, Penuelas J, Richter A, Sardans J, Wanek W (2015) The application of ecological stoichiometry to plant-microbial-soil organic matter transformations. Ecol Monogr 85:133–155s

    Article  Google Scholar 

  • Zhu FF, Lu XK, Liu L, Mo JM (2015) Phosphate addition enhanced soil inorganic nutrients to a large extent in three tropical forests. Sci Rep 5:7923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (41522107; 41430860), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB15020401), National key research and development program (2016YFE0101100), the Australia-China Joint Research Centre – Healthy Soils for Sustainable Food Production and Environmental Quality (ACSRF48165), and Youth Innovation Team Project of ISA, CAS (2017QNCXTD_GTD). We thank the Public Service Technology Center, Institute of Subtropical Agriculture, Chinese Academy of Sciences for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tida Ge.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Table S1

(DOCX 24 kb)

Table S2

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Hu, Y., Peng, P. et al. Effect of P stoichiometry on the abundance of nitrogen-cycle genes in phosphorus-limited paddy soil. Biol Fertil Soils 53, 767–776 (2017). https://doi.org/10.1007/s00374-017-1221-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-017-1221-1

Keywords

Navigation