Skip to main content
Log in

Driving factors of soil microbial ecology in alpine, mid-latitude patterned grounds (NW Italian Alps)

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Patterned ground (PG) is one of the most evident expressions of cryogenic processes affecting periglacial soils, where macroscopic, repeated variations in soil morphology seem to be associated with small-scale edaphic and vegetation gradients, potentially influencing also microbial communities. While for high-latitude environments only few studies on PG microbiology are available, the alpine context, where PG features are rarer, is almost unexplored under this point of view. We followed a double approach, based on denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR), in order to investigate microbial community composition and abundance of phylogenetic markers and functional genes (bacterial and archaeal amoA) within single PG features and among different sites from four areas in the Western Italian Alps, characterized by different lithotypes. Bacterial, archaeal, and fungal community composition was quite homogeneous within single features, with more differences among samples collected from different lithologies. The abundance of phylogenetic and functional markers was uniform at different sites, except for the highest altitude one showing the lowest bacterial, archaeal, and ammonia-oxidizing archaea abundance. Nevertheless, at a small-scale level, a concentric distribution of microbial markers was described within single features, paralleling soil chemical property trends. These first results support the hypothesis that microbial ecology in alpine, periglacial ecosystems is driven by a complex series of environmental factors, such as lithology, altitude, and cryogenic activity, acting simultaneously on community shaping both in terms of diversity and abundance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bajerski F, Wagner D (2013) Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiol Ecol 85:128–142. doi:10.1111/1574-6941.12105

    Article  PubMed  Google Scholar 

  • Ballantyne CK (2013) Patterned ground. In: Elias SA, Mock CJ (eds) The encyclopedia of quaternary science, 2nd edn. Elsevier, Amsterdam, pp 452–463

    Chapter  Google Scholar 

  • Barrett JE, Virginia RA, Wall DH, Pearsons AN, Powers LE, Burkins MB (2004) Variation in biogeochemistry and soil biodiversity across spatial scales in a polar desert ecosystem. Ecology 85(11):3105–3118

    Article  Google Scholar 

  • Blaud A, Phoenix GK, Osborn AM (2015) Variation in bacterial, archaeal and fungal community structure and abundance in High Arctic tundra soil. Polar Biol 38:1009–1024. doi:10.1007/s00300-015-1661-8

    Article  Google Scholar 

  • Bockheim JG, Munroe JS (2014) Organic carbon pools and genesis of alpine soils with permafrost: a review. Arct Antarct Alp Res 46:987–1006

    Article  Google Scholar 

  • Boyd ES, Cummings DE, Geesey GG (2007) Mineralogy influences structure and diversity of bacterial communities associated with geological substrata in a pristine aquifer. Microb Ecol 54:170–182. doi:10.1007/s00248-006-9187-9

    Article  PubMed  Google Scholar 

  • Cocolin L, Bisson LF, Mills DA (2000) Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol Lett 189:81–87. doi:10.1016/S0378-1097(00)00257-3

    Article  CAS  PubMed  Google Scholar 

  • D’Amico M (2009) Soil ecology and pedogenesis on ophiolitic materials in the western Alps (Mont Avic Natural Park, North-western Italy): soil properties and their relationships with substrate, vegetation and biological activity. Dissertation, Università degli Studi di Milano Bicocca.

  • D’Amico M, Gorra R, Freppaz M (2015) Small-scale variability of soil properties and soil-vegetation relationships in patterned ground on different lithologies (NW Italian Alps). Catena 135:47–58. doi:10.1016/j.catena.2015.07.005

    Article  Google Scholar 

  • Delmont TO, Francioli D, Jacquesson S, Laoudi S, Mathieu A, Nesme J, Ceccherini MT, Nannipieri P, Simonet P, Vogel TM (2014) Microbial community development and unseen diversity recovery in inoculated sterile soil. Biol Fertil Soils 50:1069–1076. doi:10.1007/s00374-014-0925-8

    Article  CAS  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci U S A 102:14683–14688. doi:10.1073/pnas.0506625102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank-Fahle BA, Yergeau É, Greer CW, Lantuit H, Wagner D (2014) Microbial functional potential and community composition in permafrost-affected soils of the NW Canadian Arctic. PLoS ONE 9(1):e84761. doi:10.1371/journal.pone.0084761

    Article  PubMed  PubMed Central  Google Scholar 

  • González G, Rivera-Figueroa FJ, Gould WA, Cantrell SA, Pérez-Jiménez JR (2014) Microorganisms in small patterned ground features and adjacent vegetated soils along topographic and climatic gradients in the High Arctic, Canada. Open J Soil Sci 4:47–55

    Article  Google Scholar 

  • Jansson JK, Taş N (2014) The microbial ecology of permafrost. Nat Rev Microbiol 12:414–425. doi:10.1038/nrmicro3262

    Article  CAS  PubMed  Google Scholar 

  • Kruskal JB (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29:115-129

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematics. Wiley, New York, pp 115–175

    Google Scholar 

  • Larouche JR, Bowden WB, Giordano R, Flinn MB, Crump BC (2012) Microbial biogeography of arctic streams: exploring influences of lithology and habitat. Front Microbiol 3:1–9. doi:10.3389/fmicb.2012.00309

    Article  Google Scholar 

  • Lawley B, Ripley S, Bridge P, Convey P (2004) Molecular analysis of geographic patterns of eukaryotic diversity in Antarctic soils. Appl Environ Microbiol 70:5963–5972. doi:10.1128/AEM.70.10.5963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Margesin R, Miteva V (2011) Diversity and ecology of psychrophilic microorganisms. Res Microbiol 162:346–361. doi:10.1016/j.resmic.2010.12.004

    Article  PubMed  Google Scholar 

  • Mctavish H, Fuchs JA, Hooper AB (1993) Sequence of the gene coding for ammonia monooxygenase in Nitrosomonas europaea. J Bacteriol 175:2436–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaelson GJ, Ping CL, Epstein H, Kimble JM, Walker DA (2008) Soils and frost boil ecosystems across the North American Arctic Transect. J Geophys Res 113:G03S11. doi:10.1029/2007JG000672

    Article  Google Scholar 

  • Michaelson GJ, Ping CL, Walker DA (2012) Soils associated with biotic activity on frost boils in Arctic Alaska. Soil Sci Soc Am J 76:2265–2277. doi:10.2136/sssaj2012.0064

    Article  CAS  Google Scholar 

  • Muyzer G, Waal EC, Uitterlinden AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59:695–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muyzer G, Teske A, Wirsen CO, Jannasch HW (1995) Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch Microbiol 164:165–172

    Article  CAS  PubMed  Google Scholar 

  • Nemergut DR, Costello EK, Meyer AF, Pescador MY (2005) Structure and function of alpine and arctic soil microbial communities. Res Microbiol 156:775–784. doi:10.1016/j.resmic.2005.03.004

    Article  PubMed  Google Scholar 

  • Nemergut DR, Anderson SP, Cleveland CC, Martin AP, Miller AE, Seimon A, Schmidt SK (2006) Microbial community succession in an unvegetated, recently deglaciated soil. Microb Ecol 53:110–122. doi:10.1007/s00248-006-9144-7

    Article  PubMed  Google Scholar 

  • Nicol GV, Glover LA, Prosser JI (2003) The impact of grassland management on archaeal community structure in upland pasture rhizosphere soil. Environ Microbiol 5(3):152–162

    Article  CAS  PubMed  Google Scholar 

  • Nyyssönen M, Hultman J, Ahonen L, Kukkonen I, Paulin L, Laine P, Itävaara M, Auvinen P (2014) Taxonomically and functionally diverse microbial communities in deep crystalline rocks of the Fennoscandian shield. ISME J 8:126–138. doi:10.1038/ismej.2013.125

    Article  PubMed  Google Scholar 

  • O’Donnel K (1993) Fusarium and its near relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 225–233

    Google Scholar 

  • O’Sullivan LA, Webster G, Fry JC, Parkes RJ, Weightman AJ (2008) Modified linker-PCR primers facilitate complete sequencing of DGGE DNA fragments. J Microbiol Methods 75:579–581. doi:10.1016/j.mimet.2008.08.006

    Article  PubMed  Google Scholar 

  • Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GK, Solymos MP, Stevens HH, Wagner H (2013) Vegan: community ecology package. R package version 2.0-8. http://CRAN.R-project.org/package=vegan.

  • Ollivier J, Yang S, Dörfer C, Welzl G, Kühn P, Scholten T, Wagner D, Schloter M (2014) Bacterial community structure in soils of the Tibetan Plateau affected by discontinuous permafrost or seasonal freezing. Biol Fertil Soils 50:555–559. doi:10.1007/s00374-013-0869-4

    Article  CAS  Google Scholar 

  • Øvreås L, Forney L, Daae FL, Torsvik V (1997) Distribution of bacterioplankton in meromictic Lake Sælenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. Appl Environ Microbiol 63:3367–3373, 0099-2240/97/$04.0010

    PubMed  PubMed Central  Google Scholar 

  • Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylogeny and ecophysiology. Curr Opin Microbiol 14:300–306. doi:10.1016/j.mib.2011.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45:219–235. doi:10.1007/s00374-008-0345-8

    Article  CAS  Google Scholar 

  • Prosser JI, Nicol GW (2012) Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol 20:523–531. doi:10.1016/j.tim.2012.08.001

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Yuan H, Zhang H, Zhu Y, Yin C, Tan Z, Wu J, Wei W (2013) Ammonia-oxidizing archaea are more important than ammonia-oxidizing bacteria in nitrification and NO3–N loss in acidic soil of sloped land. Biol Fertil Soils 49:767–776. doi:10.1007/s00374-012-0767-1

    Article  CAS  Google Scholar 

  • Reith F, Zammit CM, Pohrib R, Gregg AL, Wakelin SA (2015) Geogenic factors as drivers of microbial community diversity in soils overlying polymetallic deposits. Appl Environ Microbiol 81:7822–7832. doi:10.1128/AEM.01856-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reysenbach AL, Pace NR (1995) Thermophiles. In: Robb FR, Place AR (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor. pp 101–107

  • Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol. doi:10.1007/s00248-016-0748-2

    PubMed  PubMed Central  Google Scholar 

  • Steven B, Léveillé R, Pollard WH, Whyte LG (2006) Microbial ecology and biodiversity in permafrost. Extremophiles 10:259–267. doi:10.1007/s00792-006-0506-3

    Article  PubMed  Google Scholar 

  • Tian XF, Hu HW, Ding Q, Song MH, Xu XL, Zheng Y, Guo LD (2014) Influence of nitrogen fertilization on soil ammonia oxidizer and denitrifier abundance, microbial biomass, and enzyme activities in an alpine meadow. Biol Fertil Soils 50:703–713. doi:10.1007/s00374-013-0889-0

    Article  CAS  Google Scholar 

  • Timling I, Walker DA, Nusbaum C, Lennon NJ, Taylor DL (2014) Rich and cold: diversity, distribution and drivers of fungal communities in patterned-ground ecosystems of the North American Arctic. Mol Ecol 23:3258–3272. doi:10.1111/mec.12743

    Article  CAS  PubMed  Google Scholar 

  • Vetriani C, Jannasch HW, Macgregor BJ, Stahl DA, Reysenbach AL (1999) Population structure and phylogenetic characterization of marine benthic archaea in deep-sea sediments. Appl Environ Microbiol 65:4375–4384

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner D, Lipski A, Embacher A, Gattinger A (2005) Methane fluxes in permafrost habitats of the Lena Delta: effects of microbial community structure and organic matter quality. Environ Microbiol 7(10):1582–1592. doi:10.1111/j.1462-2920.2005.00849.x

    Article  CAS  PubMed  Google Scholar 

  • Walker DA, Epstein HE, Romanovsky VE, Ping CL, Michaelson GJ, Daanen RP, Shur Y, Peterson RA, Krantz WB, Raynolds MK, Gould WA, Gonzalez G, Nicolsky DJ, Vonlanthen CM, Kade AN, Kuss P, Kelley AM, Munger CA, Tarnocai CT, Matveyeva NV, Daniëls FJA (2008) Arctic patterned-ground ecosystems: a synthesis of field studies and models along a North American Arctic Transect. J Geophys Res 113:G03S01. doi:10.1029/2007JG000504

    Google Scholar 

  • Walker DA, Kuss P, Epstein HE, Kade AN, Vonlanthen CM, Raynolds MK, Daniëls FJA (2011) Vegetation of zonal patterned-ground ecosystems along the North America Arctic bioclimate gradient. Appl Veg Sci 14:440–463. doi:10.1111/j.1654-109X.2011.01149.x

    Article  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH et al (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbiol 75:2046–2056. doi:10.1128/AEM.02294-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC (2006) Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 58:65–85. doi:10.1111/j.1574-6941.2006.00147.x

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm RC, Radtke KJ, Mykytczuk NCS, Greer CW, Whyte LG (2012) Life at the wedge: the activity and diversity of arctic ice wedge microbial communities. Astrobiology 12:347–360. doi:10.1089/ast.2011.0730

    Article  CAS  PubMed  Google Scholar 

  • Xu YG, Yu WT, Ma Q, Zhou H (2012) Responses of bacterial and archaeal ammonia oxidisers of an acidic luvisols soil to different nitrogen fertilization rates after 9 years. Biol Fertil Soils 48:827–837. doi:10.1007/s00374-012-0677-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Gorra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

(PDF 149 kb)

Online Resource 2

(PDF 300 kb)

Online Resource 3

(PDF 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mania, I., D’Amico, M., Freppaz, M. et al. Driving factors of soil microbial ecology in alpine, mid-latitude patterned grounds (NW Italian Alps). Biol Fertil Soils 52, 1135–1148 (2016). https://doi.org/10.1007/s00374-016-1147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1147-z

Keywords

Navigation