Skip to main content
Log in

Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

Rhizobacterial communities may play a crucial role in phosphorus (P) nutrition of plants. However, our knowledge of how P fertilization modulates rhizobacterial communities in crops and pastures is still poor. Here, we investigated the effect of P addition (phosphate [PHO] and phytate [PHY]) on the composition of total bacterial communities and alkaline phosphomonoesterases (APase)-harboring bacterial populations in the rhizosphere microsites (root tip [RT] and mature zone [MZ]) of L. perenne. Sizes and diversities of bacterial communities were studied by 454-pyrosequencing of 16S rRNA genes, denaturing gradient gel electrophoresis (DGGE) and quantitative PCR (qPCR). Our results suggested that phosphorus addition induces significant changes in the rhizobacterial community composition. Despite that pyrosequence analysis showed that members of the Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteria were the dominant phyla in all sampled rhizosphere microsites, differences in the relative abundances of some bacterial genera were detected (e.g., Arthrobacter and Acidothermus). Greater richness in rhizosphere microsites of plants supplied with PHY compared with PHO were revealed. With respect to APase-harboring bacterial populations, DGGE (phoD gene) showed significant differences between microsites supplied with PHO, PHY and controls. qPCR (16S rRNA genes, phoD and phoX) showed significantly greater abundances of bacteria and APase genes in RT than in MZ microsites. This study contributes to our understanding of the effect P fertilization on rhizobacterial community compositions of pastures grown in Chilean Andisols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Martínez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  Google Scholar 

  • Acuña JJ, Durán P, Lagos L, Ogram A, Mora ML, Jorquera MA (2016) Bacterial alkaline phosphomonoesterase in the rhizosphere of plants grown in Chilean extreme environments. Biol Fertil Soil doi: 10.1007/s00374-016-1113-9

  • Beauregard MS, Hamel C, Atul N, St-Arnaud M (2010) Long-term phosphorus fertilization impacts soil fungal and bacterial diversity but not AM fungal community in alfalfa. Microb Ecol 59:379–389

    Article  CAS  PubMed  Google Scholar 

  • Bertsch PM, Bloom PR (1996) Aluminum. In: Bigham JM (ed) Methods of soil analysis, part 3—chemical methods. Soil Science Society of America, Madison, pp 526–527

    Google Scholar 

  • Borie F, Rubio R (2003) Total and organic phosphorus in Chilean volcanic soils. Gayana Bot 60:69–78

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze–Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  PubMed  Google Scholar 

  • Chaparro J, Badri D, Vivanco J (2014) Rhizosphere microbiome assemblage is affected by plant development. ISME J 8:790–803

    Article  CAS  PubMed  Google Scholar 

  • Chhabra S, Brazil D, Morrissey J, Burke J, O’Gara F, Dowling DN (2013) Fertilization management affects the alkaline phosphatase bacterial community in barley rhizosphere soil. Biol Fertil Soil 49:31–39

    Article  CAS  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clarke KR, Somerfield PJ, Gorley RN (2008) Testing null hypotheses in exploratory community analyses: similarity profiles and biota-environmental linkage. J Exp Mar Biol Ecol 366:56–69

    Article  Google Scholar 

  • Dai J, Chen D, Gao G, Tang X, Wu S, Wu X, Zhou J (2014) Recovery of novel alkaline phosphatase-encoding genes (phoX) from eutrophic Lake Taihu. Can J Microbiol 60:167–171

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Chen D, Wu S, Wu X, Gao G, Zhou J, Tang X, Shao K, Gao G (2015) Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu. Can J Microbiol 61(3):227–236

    Article  CAS  PubMed  Google Scholar 

  • DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    Article  CAS  PubMed  Google Scholar 

  • DeForest JL, Scott LG (2010) Available organic soil phosphorus has an important influence on microbial community composition. Soil Sci Soc Am J 74:2059–2066

    Article  CAS  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A 103:626–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraser T, Lynch DH, Entz MH, Dunfield KE (2015a) Linking alkaline phosphatase activity with bacterial phoD gene abundance in soil from a long-term management trial. Geoderma 257–258:115–122

  • Fraser T, Lynch DH, Bent E, Entz MH, Dunfiel KE (2015b) Soil bacterial phoD gene abundance and expression in response to applied phosphorus and long-term management. Soil Biol Biochem http://dx.doi.org/10.1016/j.soilbio.2015.04.014

  • Gomez PF, Ingram LO (1995) Cloning, sequencing and characterization of the alkaline phosphatase gene (phoD) from Zymomonas mobilis. FEMS Microbiol Lett 125:237–245

    Article  CAS  PubMed  Google Scholar 

  • Haegeman B, Sen B, Godon JJ, Hamelin J (2014) Only Simpson diversity can be estimated accurately from microbial community fingerprints. Microb Ecol 68:169–172

    Article  PubMed  Google Scholar 

  • Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA, Robinson KG, Sayler GS (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  PubMed  Google Scholar 

  • Hawkes CV, DeAngelis KM, Firestone MK (2007) Root interactions with microbial communities and processes. In: Whitbeck JL, Cardon Z (eds) The rhizosphere: an ecological perspective. Academic Press, Inc., San Diego, pp 1–29

    Chapter  Google Scholar 

  • Hinsinger P, Plassard C, Tang C, Jaillard B (2003) Origins of root-mediated pH changes in the rhizosphere and their responses to environmental constraints: a review. Plant Soil 248:43–59

    Article  CAS  Google Scholar 

  • Iwamoto T, Tani K, Nakamura K, Suzuki Y, Kitagawa M, Eguchi M, Nasu M (2000) Monitoring impact of in situ biostimulation treatment on groundwater bacterial community by DGGE. FEMS Microbiol Ecol 32:129–141

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Saavedra N, Maruyama F, Richardson A, Crowley DE, Catrilaf R, Henriquez E, Mora ML (2013) Phytate addition to soil induces changes in the abundance and expression of Bacillus β-propeller phytase genes in the rhizosphere. FEMS Microbiol Ecol 83:352–360

    Article  CAS  PubMed  Google Scholar 

  • Jorquera MA, Martínez OA, Marileo LG, Acuña JJ, Saggar S, Mora ML (2014) Effect of nitrogen and phosphorus fertilization on the composition of rhizobacterial communities of two Chilean Andisol pastures. World J Microb Biot 30:99–107

  • Lagos L, Navarrete O, Maruyama F, Crowley DE, Cid F, Mora ML, Jorquera MA (2014) Bacterial community structure in rhizosphere microsites of pasture (Lolium perenne var. Nui) as revealed by pyrosequencing. Biol Fertil Soil 50:1253–1266

    Article  Google Scholar 

  • Lagos L, Maruyama F, Nannipieri P, Mora ML, Ogram A, Jorquera MA (2015) Current overview on the study of bacteria in the rhizosphere by modern molecular techniques: a mini–review. J Soil Sci Plant Nutr 15:504–523

    Google Scholar 

  • Lauber CL, Hamady M, Knight R, Fierer N (2009) Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbial 75:5111–5120

    Article  CAS  Google Scholar 

  • Leff JW, Jones SE, Prober SM, Barberán A, Borer ET, Firn JL et al (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. PNAS 112:10967–10972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo H, Benner R, Long R, Hu J (2009) Subcellular localization of marine bacterial alkaline phosphatases. Proc Natl Acad Sci U S A 106:21219–21223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mander C, Wakelin S, Young S, Condron L, O’Callaghan M (2012) Incidence and diversity of phosphate-solubilizing bacteria are linked to phosphorus status in grassland soils. Soil Biol Biochem 44:93–101

    Article  CAS  Google Scholar 

  • Marschner P, Yang C, Lieberei R, Crowley DE (2001) Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol Biochem 33:1437–1445

    Article  CAS  Google Scholar 

  • Marschner P, Solaiman Z, Rengel Z (2006) Rhizosphere properties of Poaceae genotypes under P-limiting conditions. Plant Soil 283:11–24

    Article  CAS  Google Scholar 

  • Marschner P, Crowley DE, Rengel Z (2011) Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis—model and research methods. Soil Biol Biochem 43:883–894

    Article  CAS  Google Scholar 

  • Martinez OA, Jorquera MA, Crowley DE, Mora ML (2011) Influence of nitrogen fertilisation on pasture culturable rhizobacteria occurrence and the role of environmental factor son their potential PGPR activities. Biol Fertil Soils 47:875–885

    Article  Google Scholar 

  • Martínez OA, Crowley DE, Mora ML, Jorquera MA (2015) Short-term study shows that phytate-mineralizing rhizobacteria inoculation affects the biomass, phosphorus (P) uptake and rhizosphere properties of cereal plants. J Soil Sci Plant Nutr 2015(15):153–166

    Google Scholar 

  • Menezes-Blackburn D, Jorquera MA, Gianfreda L, Greiner R, Mora ML (2014) A novel phosphorus biofertilization strategy using cattle manure treated with phytase-nanoclay complexes. Biol Fertil Soil 50:583–592

    Google Scholar 

  • Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Bio-chemical and genomic comparison of inorganic phosphate solubilization in Pseudomonas species. Environ Microbiol Rep 2:403–411

    Article  CAS  PubMed  Google Scholar 

  • Mora ML, Schnettler B, Demanet FR (1999) Effect of liming and gypsum on soil chemistry, yield and mineral composition of ryegrass grown in an acidic. Commun Soil Sci Plant Anal 30:1251–1266

    Article  CAS  Google Scholar 

  • Mora ML, Alfaro M, Williams P, Stehr W, Demanet R (2004) Effect of fertiliser input on soil acidification in relation to growth and chemical composition of a pasture, and animal production. RC Suelo Nutr Veg 4:29–40

    Google Scholar 

  • Morrison E, Newman S, Bae HS, He Z, Zhou J, Reddy KR, Ogram A (2016) Microbial genetic and enzymatic responses to an anthropogenic phosphorus gradient within a subtropical peatland. Geoderma 268:119–127

    Article  CAS  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M (2011) Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. Plos One 6:e17000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Büne-mann EK, Oberson A, Frossard E (eds) Phosphorus in action, Soil Biology. Springer, Berlin, pp 215–241

    Chapter  Google Scholar 

  • Ofek M, Hadar Y, Minz D (2012) Ecology of root colonizing Massilia (Oxalobacteraceae). Plos One 7:e40117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogram A, Sayler GS, Barkay T (1987) The extraction and purification of microbial DNA from sediments. J Microbiol Methods 7:57–66

    Article  CAS  Google Scholar 

  • Pan Y, Cassman N, de Hollander M, Mendes LW, Korevaar H, Geerts RHEM, van Veen J, Kuramae EE (2014) Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiol Ecol 90:195–205

    Article  CAS  PubMed  Google Scholar 

  • Paredes C, Menezes-Blackburn D, Cartes P, Gianfreda L, Mora ML (2011) Phosphorus and Nitrogen fertilization effect on phosphorus uptake and phosphatase activity in pasture and tall fescue grown in a Chilean Andisol. Soil Sci 176:245–251

    CAS  Google Scholar 

  • Radojević M, Bashkin VN (1999) Practical environmental analysis, 2nd edn. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Ragot SA, Kerteszb MA and Bünemanna EK (2015) Diversity of the phoD alkaline phosphatase gene in soil. Appl Environ Microbiol. doi:10.1128/AEM.01823-15

  • Ray JM, Bhaya D, Block MA, Grossman AR (1991) Isolation, transcription, and inactivation of the gene for an atypical alkaline phosphatase of Synechococcus sp. strain PCC 7942. J Bacteriol 173:4297–4309

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Rousk J, Baath E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N (2010) Soil and bacterial communities across a pH gradient in an arable soil. ISME J 4:1340–135

    Article  PubMed  Google Scholar 

  • Sakurai M, Wasaki J, Tomizawa Y, Shinano T, Osaki M (2008) Analysis of bacterial communities on alkaline phosphatase genes in soil supplied with organic matter. Soil Sci Plant Nut 54:62–71

    Article  CAS  Google Scholar 

  • Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schloss PD, Westcott SL, Ryabin T (2009) Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebastian M, Ammerman JW (2009) The alkaline phosphatase PhoX is more widely distributed in marine bacteria than the classical PhoA. ISME J 3:563–572

    Article  CAS  PubMed  Google Scholar 

  • Spohn M, Kuzyakov Y (2013) Distribution of microbial- and root-derived phosphatase activities in the rhizosphere depending on P availability and C allocation—coupling soil zymography with 14C imaging. Soil Biol Biochem 67:106–113

    Article  CAS  Google Scholar 

  • Tan H, Barret M, Mooij M, Rice O, Morrissey J, Dobson A, Griffiths B, O’Gara F (2013) Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils. Biol Fertil Soil 49:661–672

    Article  CAS  Google Scholar 

  • Unno Y, Shinano T (2013) Metagenomic analysis of the rhizosphere soil microbiome with respect to phytic acid utilization. Microbes Environ 28:120–127

    Article  PubMed  Google Scholar 

  • Uroz S, Buée M, Murat C, Frey-Klett P, Martin F (2010) Pyrosequencing reveals a contrasted bacterial diversity between oak rhizosphere and surrounding soil. Environ Microbiol Rep 2:281–288

    Article  CAS  PubMed  Google Scholar 

  • Velásquez G, Ngo P-T, Rumpel C, Calabi-Floody M, Redel Y, Turner BL, Condron LM, Mora ML (2016) Chemical nature of residual phosphorus in Andisols. Geoderma 271:27–31

    Article  Google Scholar 

  • Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  CAS  Google Scholar 

  • Wang D, Marschnera P, Solaimana Z, Rengel Z (2007) Growth, P uptake and rhizosphere properties of intercropped wheat and chickpea in soil amended with iron phosphate or phytate. Soil Biol Biochem 39:249–256

    Article  CAS  Google Scholar 

  • Ward NL, Challacombe JF, Janssen PH, Henrissat B, Coutinho PM, Wu M (2009) Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl Environ Microbial 75:2046–2056

    Article  CAS  Google Scholar 

  • Warncke D, Brown JR (1998) Potassium and other basic cations. In: Brown JR (ed) Recommended chemical soil test procedures for the North Central Region, vol 221, NCR Publication No. Missouri Agricultural Experiment Station, Columbia, pp 31–33

    Google Scholar 

  • Wu JR, Shien JH, Shieh HK, Hu CC, Gong SR, Chen LY, Chang PC (2007) Cloning of the gene and characterization of the enzymatic properties of the monomeric alkaline phosphatase (PhoX) from Pasteurella multocida strain X-73. FEMS Microbiol Lett 267:113–120

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Dungan RS, Ibekwe AM, Valenzuela-Solano C, Crohn DM, Crowley DE (2003) Effect of organic mulches on soil bacterial communities one year after application. Biol Fertil Soil 38:273–281

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Editor and three anonymous referees for helpful and constructive criticism. This study was supported by Fondecyt Projects (no. 1120505 and 1141247), International Cooperation Project Conicyt-USA (code USA2013-0010), and Conicyt-MEC (no. 80140015). J.J. Acuña thanks the Fondecyt Postdoctoral Fellowship no. 3140620 and L. Lagos thanks the Conicyt Ph.D. Scholarships no. 21120698.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milko A. Jorquera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagos, L.M., Acuña, J.J., Maruyama, F. et al. Effect of phosphorus addition on total and alkaline phosphomonoesterase-harboring bacterial populations in ryegrass rhizosphere microsites. Biol Fertil Soils 52, 1007–1019 (2016). https://doi.org/10.1007/s00374-016-1137-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-016-1137-1

Keywords

Navigation