Skip to main content
Log in

Symbiotic matching, taxonomic position, and field assessment of symbiotically efficient rhizobia isolated from soybean root nodules in Sichuan, China

  • Original Paper
  • Published:
Biology and Fertility of Soils Aims and scope Submit manuscript

Abstract

To find wide host range compatible potential inoculant strains with high efficiency in N fixation, we isolated rhizobia from soybean root nodules in Sichuan. Most of the isolated rhizobia were no- or low-effective strains. Eight out of 75 isolates promoted significantly the growth of soybean cultivar Gongxuan No. 1. When tested with three more soybean cultivars, the isolates assigned as Bradyrhizobium japonicum SCAUs36, Bradyrhizobium diazoefficiens SCAUs46, and Ensifer fredii SCAUs65 promoted significantly (P < 0.05) the growth of each cultivar. The nodC and nifH genes of bradyrhizobial SCAUs36 and SCAUd46 and E. fredii SCAUs65 grouped together with those of broad host range strains. In field experiments with two more soybean cultivars, B. diazoefficiens SCAUs46 and E. fredii SCAUs65 performed well both in mild and hot-dry climates, implying that the isolates were potential inoculants to be applied in diverse soil and climate conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Albareda M, Rodríguez-Navarro DN, Temprano FJ (2009) Use of Sinorhizobium (Ensifer) fredii for soybean inoculants in South Spain. Eur J Agron 30:205–211. doi:10.1016/j.eja.2008.10.002

    Article  Google Scholar 

  • Batista L, Irisarri P, Rebuffo M, Cuitiño MJ, Sanjuán J, Monza J (2015) Nodulation competitiveness as a requisite for improved rhizobial inoculants of Trifolium pretense. Biol Fertil Soils 51:11–20. doi:10.1007/s00374-014-0946-3

    Article  Google Scholar 

  • Burton JC (1984) Legume inoculant production manual. University of Hawaii, Department of Agronomy and Soil Science, College of Tropical Agriculture and Human Resources

  • Chen WX, Yan GH, Li JL (1988) Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov. Int J Syst Bacteriol 38:392–397. doi:10.1099/00207713-38-4-392

    Article  Google Scholar 

  • Chen WX, Wang ET, Wang SY, Li YB, Chen XD, Li Y (1995) Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. Int J Syst Evol Microbiol 45:153–159. doi:10.1099/00207713-45-1-153

    CAS  Google Scholar 

  • Delamuta JRM, Ribeiro RA, Ormeño-Orrillo E, Melo IS, Martínez-Romero E, Hungria M (2013) Polyphasic evidence supporting the reclassification of Bradyrhizobium japonicum Group Ia strains as Bradyrhizobium diazoefficiens sp. nov. Int J Syst Evol Microbiol 63:3342–3351. doi:10.1099/ijs.0.049130_0

    Article  CAS  PubMed  Google Scholar 

  • Han TX, En Tao Wang ET, Han LL, Chen WF, Sui XH, Chen WX (2008) Molecular diversity and phylogeny of rhizobia associated with wild legumes native to Xinjiang, China. Syst Appl Microbiol 31:287–301. doi:10.1016/j.syapm.2008.04.004

    Article  PubMed  Google Scholar 

  • Han LL, Wang ET, Han TX, Liu J, Sui XH, Chen WF, Chen WX (2009) Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. Plant Soil 324:291–305. doi:10.1007/s11104-009-9956-6

    Article  CAS  Google Scholar 

  • Haukka K, Lindström K, Young JPW (1998) Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. Appl Environ Microbiol 64:419–426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18. doi:10.1007/s11104-008-9668-3

    Article  CAS  Google Scholar 

  • Hungria M, Chueire L, Megias M, Lamrabet Y, Probanza A, Guttierrez-Mañero FJ, Campo RJ (2006) Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. Plant Soil 288:343–356. doi:10.1007/s11104-006-9125-0

    Article  CAS  Google Scholar 

  • Hymowitz T (1970) On the domestication of the soybean. Econ Bot 24:408–421

  • Israel DW, Mathis JN, Barbour WM, Elkan GH (1986) Symbiotic effectiveness and host-strain interactions of Rhizobium fredii USDA 191 on different soybean cultivars. Appl Environ Microbiol 51:898–903

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jordan D (1982) NOTES: transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32:136–139. doi:10.1099/00207713-32-1-136

    Article  Google Scholar 

  • Kamicker BJ, Brill WJ (1986) Identification of Bradyrhizobium japonicum nodule isolates from Wisconsin soybean farms. Appl Environ Microbiol 5:487–492

    Google Scholar 

  • Kiers ET, Hutton MG, Denison RF (2007) Human selection and the relaxation of legume defences against ineffective rhizobia. Proc Biol Sci 274:3119–3126. doi:10.1098/rspb.2007.1187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Knörzer H, Graeff-Hönninger S, Guo B, Wang P, Claupein W (2009) The rediscovery of intercropping in China: a traditional cropping system for future Chinese agriculture–a review. In: Lichtfouse E (ed) Climate change, intercropping, pest control and beneficial microorganisms. Springer, Netherlands, pp 13–44

    Chapter  Google Scholar 

  • Kuykendall L, Saxena B, Devine T (1992) Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Can J Microbiol 38:501–505. doi:10.1139/m92-082

    Article  CAS  Google Scholar 

  • Li QQ, Wang ET, Chang YL, Zhang YZ, Zhang YM, Sui XH, Chen WF, Chen WX (2011) Ensifer sojae sp. nov., isolated from root nodules of Glycine max grown in saline-alkaline soils. Int J Syst Evol Microbiol 61:1981–1988. doi:10.1099/ijs.0.025049-0

    Article  CAS  PubMed  Google Scholar 

  • López-García SL, Perticari A, Piccinetti C, Ventimiglia L, Arias N, De Battista JJ, Althabegoiti MJ, Mongiardini EJ, Pérez-Giménez J, Quelas JI, Lodeiro AR (2009) In-furrow inoculation and selection for higher motility enhances the efficacy of Bradyrhizobium japonicum nodulation. Agron J 101:357–363. doi:10.2134/agronj2008.0155x

    Article  Google Scholar 

  • Mothapo NV, Grossman JM, Sooksa-nguan T, Maul J, Bräuer SL, Shi W (2013) Cropping history affects nodulation and symbiotic efficiency of distinct hairy vetch (Vicia villosa Roth.) genotypes with resident soil rhizobia. Biol Fertil Soils 49:871–880. doi:10.1007/s00374-013-0781-y

    Article  Google Scholar 

  • Qiu LJ, Chen PY, Liu ZX, Li YH, Guan RX, Wang LH, Chang RZ (2011) The worldwide utilization of the Chinese soybean germplasm collection. Plant Genet Resour 9:109–122. doi:10.1017/S1479262110000493

    Article  Google Scholar 

  • Rodríguez-Navarro DN, Margaret Oliver I, Albareda Contreras M, Ruiz-Sainz JE (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31:173–190. doi:10.1051/agro/2010023

    Article  Google Scholar 

  • Rodrı́guez-Navarro DN, Bellogı́n R, Camacho M, Daza A, Medina C, Ollero FJ, Santamarı́a C, Ruı́z-Saı́nz JE, Vinardell JM, Temprano FJ (2003) Field assessment and genetic stability of Sinorhizobium fredii strain SMH12 for commercial soybean inoculants. Eur J Agron 19:299–309. doi:10.1016/S1161-0301(02)00076-X

    Article  Google Scholar 

  • Rogel MA, Ormeno-Orrillo E, Romero EM (2011) Symbiovars in rhizobia reflect bacterial adaptation to legumes. Syst Appl Microbiol 34:96–104. doi:10.1016/j.syapm.2010.11.015

    Article  PubMed  Google Scholar 

  • Rufini M, Pereira da Silva MA, Avelar Ferreira PA, de Souza CA, Lima Soares B, de Andrade MJB, de Souza Moreira FM (2014) Symbiotic efficiency and identification of rhizobia that nodulate cowpea in a Rhodic Eutrudox. Biol Fertil Soils 50:115–132. doi:10.1007/s00374-013-0832-4

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. doi:10.1093/molbev/msr121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Terefework Z, Kaijalainen S, Lindström K (2001) AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis. J Biotechnol 91:169–180. doi:10.1016/S0168-1656(01)00338-8

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Oates J, Bereszczak J, Edwards E, Gill A, Noreen S, Zhou JC, Chen MZ, Miao LH, Xie FL, Yang JK, Zhou Q, Yang SS, Li XH, Wang L, Spaink HP, Schlaman HRM, Harteveld M, Díaz CL, van Brussel AAN, Camacho M, Rodríguez-Navarro DN, Santamaría C, Temprano F, Acebes JM, Bellogín RA, Buendía-Clavería AM, Cubo MT, Espuny MR, Gil AM, Gutiérrez R, Hidalgo A, López-Baena FJ, Madinabeitia N, Medina C, Ollero FJ, Vinardell JM, Ruiz-Sainz JE (2003) A catalogue of molecular, physiological and symbiotic properties of soybean-nodulating rhizobial strains from different soybean cropping areas of China. Syst Appl Microbiol 26:453–465. doi:10.1078/072320203322497491

    Article  CAS  PubMed  Google Scholar 

  • Tian CF, Zhou YJ, Zhang YM, Li QQ, Zhang YZ, Li DF, Wang SW, Wang J, Gibert LB, Li YR, Chen WX (2012) Comparative genomics of rhizobia nodulating soybean suggests extensive recruitment of lineage-specific genes in adaptations. Proc Natl Acad Sci U S A 109:8629–8634. doi:10.1073/pnas.1120436109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific, Oxford

    Google Scholar 

  • Vinuesa P, León-Barrios M, Silva C, Willems A, Jarabo-Lorenzo A, Pérez-Galdona R, Werner D, Martínez-Romero E (2005) Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55:569–575. doi:10.1099/ijs.0.63292-0

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu W, Jiang Y, Wang S, Li H, Li Y (2012) Effect of Rhizobium inoculation and nitrogen level on growth of soybean. Soybean Sci Technol 10:14–17

    Google Scholar 

  • Wang JY, Wang R, Zhang YM, Liu HC, Chen WF, Wang ET, Sui XH, Chen WX (2013) Bradyrhizobium daqingense sp. nov., isolated from soybean nodules. Int J Syst Evol Microbiol 63:616–624. doi:10.1099/ijs.0.034280-0

    Article  CAS  PubMed  Google Scholar 

  • Weidner S, Becker A, Bonilla I, Jaenicke S, Lloret J, Margaret I, Pühler A, Ruiz-Sainz JE, Schneiker-Bekel S, Szczepanowski R, Vinardell JM, Zehner S, Göttfert M (2012) Genome sequence of the soybean symbiont Sinorhizobium fredii HH103. J Bacteriol 194:1617–1618. doi:10.1128/JB.06729-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woffelman C (1994) DNAMAN for Windows, version 2.6. Lynon Biosoft. Institute of Molecular Plant Sciences, Leiden University, the Netherlands

    Google Scholar 

  • Wu LJ, Wang HQ, Wang ET, Chen WX, Tian CF (2011) Genetic diversity of nodulating and non-nodulating rhizobia associated with wild soybean (Glycine soja Sieb. & Zucc.) in different ecoregions of China. FEMS Microbiol Ecol 76:439–450. doi:10.1111/j.1574-6941.2011.01064.x

    Article  CAS  PubMed  Google Scholar 

  • Xu LM, Ge C, Cui Z, Li J, Fan H (1995) Bradyrhizobium liaoningense sp. nov., isolated from the root nodules of soybeans. Int J Syst Bacteriol 45:706–711. doi:10.1099/00207713-45-4-706

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhang Y, Diao X, Chen KZ (2011) Impacts of agricultural public spending on Chinese food economy: a general equilibrium approach. China Agr Econ Rev 3:518–534. doi:10.1108/17561371111192365

    Article  Google Scholar 

  • Xu KW, Penttinen P, Chen YX, Chen Q, Zhang X (2013a) Symbiotic efficiency and phylogeny of the rhizobia isolated from Leucaena leucocephala in arid-hot river valley area in Panxi, Sichuan, China. Appl Microbiol Biotechnol 97:783–793. doi:10.1007/s00253-012-4246-2

    Article  CAS  PubMed  Google Scholar 

  • Xu KW, Penttinen P, Chen YX, Zou L, Zhou T, Zhang X, Hu C, Liu F (2013b) Polyphasic characterization of rhizobia isolated from Leucaena leucocephala from Panxi, China. World J Microbiol Biotechnol 29:2303–2315. doi:10.1007/s11274-013-1396-z

    Article  PubMed  Google Scholar 

  • Yang SS, Bellogı́n RA, Buendı́a A, Camacho M, Chen M, Cubo T, Daza A, Dı́aze CL, Espuny MR, Gutiérrez R, Harteveld M, Li XH, Lyrab MCCP, Madinabeitia N, Medina C, Miao L, Ollerob FJ, Olsthoorn MMA, Rodrı́guez DN, Santamarı́a C, Schlaman HRM, Spaink HP, Temprano F, Thomas-Oates JE, Van Brussel AAN, Vinardell JM, Xie F, Yang J, Zhang HY, Zhen J, Zhou J, Ruiz-Sainz JE (2001) Effect of pH and soybean cultivars on the quantitative analyses of soybean rhizobia populations. J Biotechnol 91:243–255. doi:10.1016/S0168-1656(01)00340-6

    Article  CAS  PubMed  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230. doi:10.1099/ijs.0.01408-0

    Article  CAS  PubMed  Google Scholar 

  • Zhang YM, Li Y Jr, Chen WF, Wang ET, Tian CF, Li QQ, Zhang YZ, Sui XH, Chen WX (2011) Biodiversity and biogeography of Rhizobia associated with soybean plants grown in the North China Plain. Appl Environ Microbiol 77:6331–6342. doi:10.1128/AEM.00542-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang YM, Ying JL, Chen WF, Wang ET, Sui XH, Li QQ, Zhang YZ, Zhou YG, Chen WX (2012) Bradyrhizobium huanghuaihaiense sp. nov., an effective symbiotic bacterium isolated from soybean (Glycine max L.) nodules. Int J Syst Evol Microbiol 62:1951–1957. doi:10.1099/ijs.0.034546-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by Science and Technology supported project of Sichuan Province of China (2012RZ0018), the National Maize Production System in China (CARS-02-24), and the National Natural Science Foundation of China (31210103906).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Xue Chen or Kai Wei Xu.

Additional information

Yuan Xue Chen, Tao Zhou and Petri Penttinen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y.X., Zhou, T., Penttinen, P. et al. Symbiotic matching, taxonomic position, and field assessment of symbiotically efficient rhizobia isolated from soybean root nodules in Sichuan, China. Biol Fertil Soils 51, 707–718 (2015). https://doi.org/10.1007/s00374-015-1019-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00374-015-1019-y

Keywords

Navigation